Difference between revisions of "JD"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 31: Line 31:
  
 
</table>
 
</table>
 +
 +
Below are some typical <math> {C_A}</math> values:
 +
*circle 31.2
 +
*square 30.88
  
 
===Oil===
 
===Oil===

Revision as of 11:45, 11 July 2023

Brief

JD - dimensionless productivity index[1], inverse of dimensionless pressure (based on average pressure) which contains the type of flow regime, boundary condition, drainage shape and stimulation [2].

Math & Physics

 {J_D} = \frac{1}{\bar{P}_D}

From the Darcy's law for the unfractured well the JD is:

Well in circular drainage area Well in a drainage area with the shape factor  {C_A}[2]
Steady state  {J_D} = \frac{1}{ln{\frac{r_e}{r_w}-\frac{1}{2}+S}} {J_D} = \frac{1}{\frac{1}{2}ln{\frac{4.5A}{C_A{r_w}^2}+S}}
Pseudo steady state  {J_D} = \frac{1}{ln{\frac{r_e}{r_w}-\frac{3}{4}+S}} {J_D} = \frac{1}{\frac{1}{2}ln{\frac{2.25A}{C_A{r_w}^2}+S}}

Below are some typical  {C_A} values:

  • circle 31.2
  • square 30.88

Oil

 {J_D} = \frac{141.2 B \mu}{kh} \frac{q}{\bar{P} - P_{wf}} = \frac{141.2 B \mu}{kh} J
 {q} = \frac{kh}{141.2 B \mu} (\bar{P} - P_{wf}) J_D

Gas

J_D=\frac{1422 \times 10^3\ T_R}{kh} \frac{q_g}{P_{\bar{P}}-P_{P_{wf}}}

Maximum J_D

The undamaged unstimulated vertical well potential in a pseudo steady radial flow is:

 {J_D}_{max} \approx \frac{1}{ln{\frac{500}{0.1}-\frac{3}{4}+0}} \approx 0.13

The maximum possible stimulated well potential for pseudo steady linear flow is:

{J_D}_{max}= \frac{6}{\pi} \approx 1.91 , see 6/π stimulated well potential

The maximum possible stimulated well potential for steady state linear flow is:

{J_D}_{max}= \frac{4}{\pi} \approx 1.27 , see 4/π stimulated well potential

Nomenclature

 B = formation volume factor, bbl/stb
 J = productivity index, stb/psia
 J_D = dimensionless productivity index, dimensionless
 kh = permeability times thickness, md*ft
 \bar{P} = average reservoir pressure, psia
 \bar{P}_D = dimensionless pressure (based on average pressure), dimensionless
 P_{\bar{P}} = average reservoir pseudopressure, psia2/cP
 P_{wf} = well flowing pressure, psia
 P_{P_{wf}} = average well flowing pseudopressure, psia2/cP
 q = flowing rate, stb/d
 q_g = gas rate, MMscfd
 r_w = wellbore radius, ft
 r_e = drainage radius, ft
 S = skin factor, dimensionless
 T = temperature, °R

Greek symbols

 \mu = viscosity, cp

See Also

References

  1. Rueda, J.I.; Mach, J.; Wolcott, D. (2004). "Pushing Fracturing Limits to Maximize Producibility in Turbidite Formations in Russia"Free registration required (SPE-91760-MS). Society of Petroleum Engineers. 
  2. 2.0 2.1 Wolcott, Don (2009). Applied Waterflood Field DevelopmentPaid subscription required. Houston: Energy Tribune Publishing Inc.