Difference between revisions of "4/π stimulated well potential"
From wiki.pengtools.com
												 (→Math & Physics)  | 
				 (→Brief)  | 
				||
| (55 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
[[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]]  | [[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]]  | ||
| − | [[4/π stimulated well potential |4/π]] is the maximum possible stimulation potential for steady state linear flow in a square well spacing.  | + | [[4/π stimulated well potential |4/π]] is the maximum possible stimulation well potential for steady state linear flow in a square well spacing.  | 
==Math & Physics==  | ==Math & Physics==  | ||
| Line 8: | Line 8: | ||
Steady state flow boundary conditions:  | Steady state flow boundary conditions:  | ||
| − | <math>P |_{x=x_e/2} = P |_{x=-x_e/2} = P_i</math>  | + | :<math>P |_{x=x_e/2} = P |_{x=-x_e/2} = P_i</math>  | 
| − | <math> \frac{  | + | :<math> \frac{dP}{dt} =0\ for \ \forall x </math>  | 
From [[Darcy's law]]:  | From [[Darcy's law]]:  | ||
| − | <math>\frac{q}{2}=\frac{kA}{  | + | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math>  | 
| + | :<math> A =y_e*h</math>  | ||
| + | |||
| + | :<math>dP=\frac{q \mu}{2ky_eh} dx</math>  | ||
| + | |||
| + | Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math>  | ||
| + | |||
| + | Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math>  | ||
| + | |||
| + | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{2ky_eh} x + P_{wf} \right ) dx}{\int dx} = \left. \frac{q \mu}{2ky_eh} \frac{x}{2} \right|_{x=0}^{x=x_e/2} + P_{wf} = \frac{q \mu x_e}{8ky_eh} + P_{wf}</math>  | ||
| + | |||
| + | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{8ky_eh}{q \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}</math>  | ||
| + | |||
| + | ==See also==  | ||
| + | [[6/π stimulated well potential]]<BR/>  | ||
| + | [[JD]]<BR/>  | ||
| + | [[:Category:optiFrac | optiFrac]]<BR/>  | ||
| + | [[:Category:fracDesign | fracDesign]]<BR/>  | ||
| + | [[Production Potential]]  | ||
| + | |||
| + | ==Nomenclature==  | ||
| + | |||
| + | :<math> A </math> = cross-sectional area, cm2  | ||
| + | :<math> h </math> = thickness, m  | ||
| + | :<math> J_D</math> = dimensionless productivity index, dimensionless  | ||
| + | :<math> k</math> = permeability, d  | ||
| + | :<math> P </math> = pressure, atm  | ||
| + | :<math> P_i </math> = initial pressure, atm  | ||
| + | :<math> \bar P</math> = average pressure, atm  | ||
| + | :<math> q </math> = flow rate, cm<sup>3</sup>/sec  | ||
| + | :<math> x </math> = length, m  | ||
| + | :<math> x_e</math> = drinage area length, m  | ||
| + | :<math> y_e</math> = drinage area width, m  | ||
| + | |||
| + | ===Greek symbols===  | ||
| + | |||
| + | :<math> \mu </math> =viscosity, cp  | ||
[[Category:Technology]]  | [[Category:Technology]]  | ||
| + | [[Category:pengtools]]  | ||
[[Category:optiFrac]]  | [[Category:optiFrac]]  | ||
[[Category:optiFracMS]]  | [[Category:optiFracMS]]  | ||
[[Category:fracDesign]]  | [[Category:fracDesign]]  | ||
| + | |||
| + | {{#seo:  | ||
| + | |title=Hydraulic fracturing formulas 4/π  | ||
| + | |titlemode= replace  | ||
| + | |keywords=hydraulic fracturing, hydraulic fracturing formulas, well potential  | ||
| + | |description=Hydraulic fracturing formulas maximum possible stimulation well potential for steady state linear flow 4/π  | ||
| + | }}  | ||
Latest revision as of 06:40, 10 December 2018
Brief
4/π is the maximum possible stimulation well potential for steady state linear flow in a square well spacing.
Math & Physics
Steady state flow boundary conditions:
From Darcy's law:
Integration gives: 
Since average pressure is: 
See also
6/π stimulated well potential
JD
 optiFrac
 fracDesign
Production Potential
Nomenclature
 = cross-sectional area, cm2
 = thickness, m
 = dimensionless productivity index, dimensionless
 = permeability, d
 = pressure, atm
 = initial pressure, atm
 = average pressure, atm
 = flow rate, cm3/sec
 = length, m
 = drinage area length, m
 = drinage area width, m
Greek symbols
 =viscosity, cp







