Category: OptiFracMS

From wiki.pengtools.com
Revision as of 07:18, 12 November 2019 by MishaT (talk | contribs) (References)
Jump to: navigation, search

Multistage Fracturing Software

pengtools optiFracMS

optiFracMS is a software to optimize the number of hydraulic fractures in horizontal well [1].

For the given set of reservoir properties and the proppant mass optiFracMS calculates optimal number of transverse hydraulic fractures and required fractures geometry to maximize well productivity index.

optiFracMS is available online at www.pengtools.com.

Typical applications

  • Multistage Fracturing Design in tight oil and gas reservoirs
    • How many fractures are required to maximize production?
      • Number of fractures, n.
    • What fractures geometry is required to maximize production?
      • Dimensionless Fracture conductivity, CfD .
      • Fracture half length, Xf .
      • Fracture width, w .
      • Fracture penetration, Ix .
    • What would be the optimal productivity index?
      • Dimensionless productivity index, JD .
  • Multistage Post fracture performance reviews
    • Find out how far your well's productivity from where it should be (from the optimum)
  • Multistage Fracturing Sensitivity Studies and Benchmarking

Math & Physics

Horizontal well with multiple transverse fractures in a rectangular drainage area
J_D=\frac{3}{\pi}\ \frac{N_p}{X_e/Y_e} - technical potential for multistage fracturing [1],
N_p=\frac{2 k_f V_f}{k V_r} - proppant number,
I_x=\frac{2x_f}{X_e} - penetration ratio,
C_{f_D}=\frac{k_f w_f}{k x_f} - dimensionless fracture conductivity,

Type Curves

The type curves show multistage fracturing dimensionless productivity index, JD , at pseudo-steady state as a function of number of fractures, n and proppant number, Np for a horizontal well with multiple transverse hydraulic fractures in a square drainage area.

Open in optiFracMS

Type Curves were obtained, through 28,000 runs with direct boundary element (DBE) method [1].

For the given proppant number, Np, the more fractures that are created the higher the well JD. This is achieved by increasing the number of fractures, n, at the expense of individual fracture half-length and/or width. However, at some point, the additional increase in the number of fractures will result in fractures that are too slim to be practical. Such constrain is addressed below.

These type curves are also applicable for the case of rectangular (nonsquare) drainage areas.

Modification to rectangular (nonsquare) drainage areas

The modification needed for a rectangular well drainage is to divide both number of fractures and the corresponding JD by (Xe/Ye) [1].

Physical Constraints

Choke skin

Choke skin is defined as the additional pressure loss because of convergence of flow in the vertical fracture to the horizontal wellbore.

Choke skin can be calculated as follows:

{J_D}_{choke}= \frac{n}{\frac{n}{J_D}+\frac{I_x}{N_p} \frac{2h}{x_e} \left ( ln(h/2r_w)-\pi/2 \right )}

The effect of choke skin does not change the behavior of JD vs. n type curve, but the value of JD is multiplied by a factor that is a function of the number of fractures.

Choke skin correction factor
The correction factor as a function of n for xe/h = 65 and h/rw=250. [1]

The choke skin effect increases with the number of fractures, however this dependence finally flattens out [1].

Minimum fracture width constraint

To maintain fracture permeability kf, at least three proppant grains of width are required.

To account for this practical requirement, the deviation from the technical optimum will be required, as shown by Economides et al. (2002). Instead of further decreasing the fracture width, the only possible option for a further increase in the number of fractures will be to decrease each fracture half-length. This will result in suboptimal performance of each fracture and, hence, suboptimal performance of the whole system in comparison to the ideal case without the minimum practical fracture width.

Flow Diagram

Workflow

Case Study

Main features

  • Plot of JD as a function of n and Np as parameter.
  • Plot of JD as a function of Np showing the width constraint influence.
  • Plot of JD and wf as a function of n for the given Np .
  • Plot of JD as a function of CfD for the given n.
  • Design optimization curves which corresponds to the maximum JD values for different Np and n.
  • Optimum number of fractures n and well JD.
  • Practical constrains envelope – minimum fracture width and choke skin effect.
  • Sensitivity for the different from the optimal n, Xf, Ix, CfD, wf.
  • Hydraulic fracturing proppant catalog with the predefined proppant properties.

Interface features

  • Save and share models with colleagues
  • Last saved model on current computer and browser is automatically opened
  • Metric and US oilfield units
  • Save as image and print plots by means of chart context menu (button at the upper-right corner of chart)
  • Download pdf report with input parameters, calculated values and plots
  • Select and copy results to Excel or other applications

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Guk, Vyacheslav; Tuzovskiy, Mikhail; Wolcott, Don; Mach, Joe (June 2019). "Optimizing Number of Fractures in Horizontal Well"Free registration required. SPE Journal. Society of Petroleum Engineers. 24 (SPE-174772-PA). 

Cite error: <ref> tag with name "UFD2002" defined in <references> is not used in prior text.