4/π stimulated well potential

From wiki.pengtools.com
Revision as of 10:56, 12 September 2018 by MishaT (talk | contribs) (Greek symbols)
Jump to: navigation, search

Brief

Stimulated well drainage

4/π is the maximum possible stimulation potential for steady state linear flow in a square well spacing.

Math & Physics

Steady state flow boundary conditions:

P |_{x=x_e/2} = P |_{x=-x_e/2} = P_i
 \frac{dP}{dt} =0\ for \ \forall x

From Darcy's law:

\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}
 A =y_e*h
dP=\frac{q \mu}{2ky_eh} dx

Integration gives: P-P_{wf}=\frac{q \mu}{2ky_eh} x

Since average pressure is: \bar P = \frac{\int P dx}{\int dx}

 \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{2ky_eh} x + P_{wf} \right ) dx}{\int dx} = \left. \frac{q \mu}{2ky_eh} \frac{x}{2} \right|_{x=0}^{x=x_e/2} + P_{wf} = \frac{q \mu x_e}{8ky_eh} + P_{wf}
J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{8ky_eh}{q \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}

See also

JD
optiFrac
fracDesign
Production Potential

Nomenclature

 A = cross-sectional area, cm2
 h = thickness, m
 J_D = dimensionless productivity index, dimensionless
 k = permeability, d
 P = pressure, atm
 P_i = initial pressure, atm
 \bar P = average pressure, atm
 q = flow rate, cm3/sec
 x = length, m
 x_e = drinage area length, m
 y_e = drinage area width, m

Greek symbols

 \mu =viscosity, cp