Fanning correlation
From wiki.pengtools.com
Contents
Brief
The Fanning is the name used to refer to the calculation of the hydrostatic pressure difference and the friction pressure loss for the dry gas.
Fanning is the default VLP correlation for the dry gas wells in the PQplot.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
- , slip mixture density [1].
- , no-slip mixture density [1].
Colebrook–White [2] equation for the Darcy's friction factor:
The pseudo wall roughness:
- , with the limit [1]
Reynolds two phase number:
Discussion
Why Gray correlation?
The Gray correlation was found to be the best of several initially tested ...— Nitesh Kumar l[5]
Workflow Hg & CL
Modifications
1. Use Fanning correlation for dry gas (WGR=0 and OGR=0).
2. Use watercut instead of WOR to account for the OGR=0 case.
Nomenclature
- = correlation group, dimensionless
- = flow area, ft2
- = correlation group, dimensionless
- = formation factor, bbl/stb
- = no-slip holdup factor, dimensionless
- = pipe diameter, ft
- = depth, ft
- = holdup factor, dimensionless
- = friction factor, dimensionless
- = gas-liquid ratio, scf/bbl
- = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
- = pipe diameter number, dimensionless
- = velocity number, dimensionless
- = pressure, psia
- = conversion constant equal to 32.174049, lbmft / lbfsec2
- = production rate, bbl/d
- = superficial liquid to gas ratio, dimensionless
- = Reynolds number, dimensionless
- = solution gas-oil ratio, scf/stb
- = specific gravity, dimensionless
- = temperature, °R or °K, follow the subscript
- = velocity, ft/sec
- = water-oil ratio, bbl/bbl
- = gas compressibility factor, dimensionless
Greek symbols
- = absolute roughness, ft
- = pseudo wall roughness, ft
- = viscosity, cp
- = density, lbm/ft3
- = slip density, lbm/ft2
- = surface tension of liquid-air interface, dynes/cm
Subscripts
g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.
- ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws". Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
- ↑ Moody, L. F. (1944). "Friction factors for pipe flow". Transactions of the ASME. 66 (8): 671–684.
- ↑ 4.0 4.1 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits". Journal of Petroleum Technology. 17(04): 475–484.
- ↑ Kumar, N.; Lea, J. F. (January 1, 2005). "Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading" (SPE-92049-MS).
- ↑ 6.0 6.1 6.2 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.