Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
(→Math & Physics) |
(→Math & Physics) |
||
Line 52: | Line 52: | ||
Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math>: | Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math>: | ||
− | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( - \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) + P_{wf} \right ) dx}{\int \limits_{0}^{x_e/2}dx} = - \frac{q \mu}{2 k x_e y_e h} \frac{\frac{ | + | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( - \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) + P_{wf} \right ) dx}{\int \limits_{0}^{x_e/2}dx} = - \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} + P_{wf} </math> |
==Diff eq== | ==Diff eq== |
Revision as of 10:15, 12 September 2018
Brief
6/π is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Diffusivity Equation:
- ( 1 )
From Darcy's law:
From Material Balance:
- ( 2 )
( 2 ) - > ( 1 ) :
- ( 3 )
Integrating ( 3 ):
- ( 3 )
- must satisfy boundary condition:
- ( 4 )
Integrating ( 4 ):
- ( 5 )
Since average pressure is: :
Diff eq
From Mass conservation:
- ( 1 )
From Darcy's law:
- ( 2 )
( 2 ) →( 1 ):
- ( 3 )
- ( 4 )
- ( 5 )
( 5 ) -> ( 4 ):
- ( 6 )
- ( 7 )
Assumption that viscosity is constant cancels out first term in left hand side of (7):
- ( 8 )
- ( 9 )
( 9 ) -> ( 8 ):
- ( 10 )
Term in (10) is second order of magnitude low and can be cancelled out, which yields:
- ( 11 )
See also
optiFrac
fracDesign
Production Potential
Nomenclature
- = cross-sectional area, cm2
- = thickness, m
- = permeability, d
- = pressure, atm
- = initial pressure, atm
- = average pressure, atm
- = flow rate, cm3/sec
- = length, m
- = drinage area length, m
- = drinage area width, m
Greek symbols
- = oil viscosity, cp