Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
(→Math & Physics) |
(→Math & Physics) |
||
Line 14: | Line 14: | ||
From Mass conservation: | From Mass conservation: | ||
− | + | :<math>\frac{d(\rho q)}{2 dx}=y_e h \phi \frac{d\rho}{dt}</math> ( 1 ) | |
From [[Darcy's law]]: | From [[Darcy's law]]: | ||
− | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> | + | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> ( 2 ) |
:<math> A =y_e*h</math> | :<math> A =y_e*h</math> | ||
− | (2) →(1): | + | ( 2 ) →( 1 ): |
+ | |||
+ | :<math>\frac{d}{dx} \left ( \frac{\rho k y_e h}{\mu} \frac{dP}{dx} \right )=y_e h \phi \frac{d\rho}{dt}</math> ( 3 ) | ||
+ | |||
+ | :<math>\frac{d}{dx} \left ( \frac{k \rho}{\mu} \frac{dP}{dx} \right )=\phi \frac{d\rho}{dt}</math> ( 4 ) | ||
+ | |||
+ | :<math>c=\frac{1}{\rho} \frac{d \rho}{dP}</math> ( 5 ) | ||
− | |||
Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math> | Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math> |
Revision as of 09:15, 12 September 2018
Brief
6/π is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Mass conservation:
( 1 )
From Darcy's law:
( 2 )
( 2 ) →( 1 ):
( 3 )
( 4 )
( 5 )
Integration gives:
Since average pressure is:
See also
optiFrac
fracDesign
Production Potential
Nomenclature
= cross-sectional area, cm2
= thickness, m
= permeability, d
= pressure, atm
= initial pressure, atm
= average pressure, atm
= flow rate, cm3/sec
= length, m
= drinage area length, m
= drinage area width, m
Greek symbols
= oil viscosity, cp