Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
(→Math & Physics) |
(→Math & Physics) |
||
Line 14: | Line 14: | ||
From Mass conservation: | From Mass conservation: | ||
− | :<math>\frac{d(\rho q)}{2 dx}=y_e h \phi \frac{d\rho}{dt}</math> (1) | + | :<math>\frac{d(\rho q)}{2 dx}=y_e h \phi \frac{d\rho}{dt}</math> '''( 1 )''' |
From [[Darcy's law]]: | From [[Darcy's law]]: | ||
− | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> (2) | + | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> '''( 2 )''' |
:<math> A =y_e*h</math> | :<math> A =y_e*h</math> | ||
Line 24: | Line 24: | ||
(2) →(1): | (2) →(1): | ||
− | :<math>\frac{d}{dx} \left ( \frac{\rho k y_e h}{\mu} \frac{dP}{dx} \right )=y_e h \phi \frac{d\rho}{dt}</math> | + | :<math>\frac{d}{dx} \left ( \frac{\rho k y_e h}{\mu} \frac{dP}{dx} \right )=y_e h \phi \frac{d\rho}{dt}</math>'''( 3 )''' |
Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math> | Integration gives: <math>P-P_{wf}=\frac{q \mu}{2ky_eh} x</math> |
Revision as of 09:13, 12 September 2018
Brief
6/π is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Mass conservation:
( 1 )
From Darcy's law:
( 2 )
(2) →(1):
( 3 )
Integration gives:
Since average pressure is:
See also
optiFrac
fracDesign
Production Potential
Nomenclature
= cross-sectional area, cm2
= thickness, m
= permeability, d
= pressure, atm
= initial pressure, atm
= average pressure, atm
= flow rate, cm3/sec
= length, m
= drinage area length, m
= drinage area width, m
Greek symbols
= oil viscosity, cp