Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
(→Math & Physics) |
(→Math & Physics) |
||
Line 14: | Line 14: | ||
From Mass conservation: | From Mass conservation: | ||
− | :<math>\frac{d(\rho q)}{2 dx}=y_e h \phi \frac{d\rho}{dt}</math> | + | :<math>\frac{d(\rho q)}{2 dx}=y_e h \phi \frac{d\rho}{dt}</math> (1) |
From [[Darcy's law]]: | From [[Darcy's law]]: | ||
− | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> | + | :<math>\frac{q}{2}=\frac{kA}{\mu}\ \frac{dP}{dx}</math> (2) |
:<math> A =y_e*h</math> | :<math> A =y_e*h</math> | ||
+ | |||
+ | (2) →(1): | ||
:<math>dP=\frac{q \mu}{2ky_eh} dx</math> | :<math>dP=\frac{q \mu}{2ky_eh} dx</math> |
Revision as of 09:09, 12 September 2018
Brief
6/π is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Mass conservation:
- (1)
From Darcy's law:
- (2)
(2) →(1):
Integration gives:
Since average pressure is:
See also
optiFrac
fracDesign
Production Potential
Nomenclature
- = cross-sectional area, cm2
- = thickness, m
- = permeability, d
- = pressure, atm
- = initial pressure, atm
- = average pressure, atm
- = flow rate, cm3/sec
- = length, m
- = drinage area length, m
- = drinage area width, m
Greek symbols
- = oil viscosity, cp