Difference between revisions of "4/π stimulated well potential"

From wiki.pengtools.com
Jump to: navigation, search
(Nomenclature)
(Nomenclature)
Line 35: Line 35:
 
==Nomenclature==
 
==Nomenclature==
  
:<math> A </math> = cross-sectional area, cm<sup>2</sup>
+
:<math> A </math> = cross-sectional area
:<math> k</math> = permeability, d
+
:<math> k</math> = permeability
:<math> L </math> = length, cm
+
:<math> x </math> = length
:<math> P </math> = pressure, atm
+
:<math> P </math> = pressure
:<math> q </math> = flow rate, cm<sup>3</sup>/sec
+
:<math> q </math> = flow rate
  
 
===Greek symbols===
 
===Greek symbols===
  
:<math> \mu </math> = [[Darcy's law]] oil viscosity, cp
+
:<math> \mu </math> = oil viscosity
  
 
[[Category:Technology]]
 
[[Category:Technology]]

Revision as of 10:06, 10 September 2018

Brief

Stimulated well drainage

4/π is the maximum possible stimulation potential for steady state linear flow in a square well spacing.

Math & Physics

Steady state flow boundary conditions:

P |_{x=x_e/2} = P |_{x=-x_e/2} = P_i
 \frac{dP}{dt} =0\ for \ \forall x

From Darcy's law:

\frac{q}{2}=\frac{kA}{B \mu}\ \frac{dP}{dx}
 A =y_e*h
dP=\frac{q B \mu}{2ky_eh} dx

Integration gives: P-P_{wf}=\frac{q B \mu}{2ky_eh} x

Since average pressure is: \bar P = \frac{\int P dx}{\int dx}

 \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q B \mu}{2ky_eh} x + P_{wf} \right ) dx}{\int dx} = \left. \frac{q B \mu}{2ky_eh} \frac{x}{2} \right|_{x=0}^{x=x_e/2} + P_{wf} = \frac{q B \mu x_e}{8ky_eh} + P_{wf}

J_D=\frac{q B \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q B \mu}{2 \pi k h} \frac{8ky_eh}{q B \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}

See also

optiFrac
fracDesign
Production Potential

Nomenclature

 A = cross-sectional area
 k = permeability
 x = length
 P = pressure
 q = flow rate

Greek symbols

 \mu = oil viscosity