Difference between revisions of "3 Phase IPR"
(→See also) |
|||
Line 78: | Line 78: | ||
|titlemode= replace | |titlemode= replace | ||
|keywords=Inflow Performance Relationship, nodal analysis, IPR curve, IPR calculator | |keywords=Inflow Performance Relationship, nodal analysis, IPR curve, IPR calculator | ||
− | |description=Three-phase inflow performance relationship for | + | |description=Three-phase inflow performance relationship for total volume of produced rate (including free gas). |
}} | }} | ||
[[Category:PQplot]] | [[Category:PQplot]] |
Revision as of 07:19, 17 April 2019
Contents
Three-phase Inflow Performance Relationship
3 Phase IPR is an IPR curve calculated on the basis of total barrels of produced fluid, including gas.
3 Phase IPR curve is used in Pump Design software for pump sizing.
Math and Physics
The volume of 1 stb of liquid plus associated gas (volume factor) at any pressure and temperature is given by[1]:
The total volume of produced fluid rate (liquid plus gas) at any conditions of pressure and temperature:
- is calculated as usual using:
- Vogel's IPR equation
- Composite IPR equation
3 Phase IPR calculation example
Following the well #1 example given by Brown[1]on Figure 5.8, page 191:
Given:
- = 2550 psi
- = 2100 psi
Test data:
- = 2300 psi
- = 500 b/d
Calculate:
Determine the 3 Phase IPR curves for Fw=0, 0.25, 0.5, 0.75, and 1.
Solution:
The problem was run through PQplot software for different values of watercut.
Result 3 Phase IPR curves are shown on Fig.1. Points indicate results obtained by Brown [1].
The PQplot model from this example is available online by the following link: 3 Phase IPR calculation example
Nomenclature
- = calculation variables
- = oil fraction, fraction
- = water fraction, fraction
- = productivity index, stb/d/psia
- = pressure, psia
- = flowing rate, stb/d
Subscripts
- b = at bubble point
- max = maximum
- o = oil
- r = reservoir
- t = total
- wf = well flowing bottomhole pressure
- wfG = well flowing bottomhole pressure at point G