Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
												 (→Math & Physics)  | 
				 (→Math & Physics)  | 
				||
| Line 48: | Line 48: | ||
:<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) +  P_{wf} \right ) dx}{\int   \limits_{0}^{x_e/2}dx} = \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} +  P_{wf} </math>  | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) +  P_{wf} \right ) dx}{\int   \limits_{0}^{x_e/2}dx} = \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} +  P_{wf} </math>  | ||
| − | :<math> \bar P - P_{wf} = \frac{q \mu}{2 k x_e y_e h} \frac{\frac{1}{3} \frac{x_e^3}{8} -\frac{  | + | :<math> \bar P - P_{wf} = \frac{q \mu}{2 k x_e y_e h} \frac{\frac{1}{3} \frac{x_e^3}{8} -\frac{x_e}{2} \frac{x_e^2}{4}}{\frac{x_e}{2}} = \frac{q \mu}{12 k h} \frac{x_e}{y_e}</math>  | 
:<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{12 k h}{q \mu} \frac{y_e}{x_e} = \frac{6 y_e}{\pi x_e}=\frac{6}{\pi}</math>  | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{12 k h}{q \mu} \frac{y_e}{x_e} = \frac{6 y_e}{\pi x_e}=\frac{6}{\pi}</math>  | ||
Revision as of 10:42, 12 September 2018
Brief
6/π is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Diffusivity Equation:
 ( 1 )
From Material Balance:
 ( 2 )
( 2 ) - > ( 1 ) :
 ( 3 )
Integrating ( 3 ):
 must satisfy boundary condition: 
 ( 4 )
Integrating ( 4 ):
 ( 5 )
Since average pressure is: 
:
Diff eq
From Mass conservation:
 ( 1 ) 
From Darcy's law:
 ( 2 )
( 2 ) →( 1 ):
 ( 3 )
 ( 4 )
 ( 5 )
( 5 ) -> ( 4 ):
 ( 6 )
 ( 7 )
Assumption that viscosity is constant cancels out first term in left hand side of (7):
 ( 8 )
 ( 9 )
( 9 ) -> ( 8 ):
 ( 10 )
Term 
 in (10) is second order of magnitude low and can be cancelled out, which yields:
 ( 11 )
See also
 optiFrac
 fracDesign
Production Potential
Nomenclature
 = cross-sectional area, cm2
 = thickness, m
 = permeability, d
 = pressure, atm
 = initial pressure, atm
 = average pressure, atm
 = flow rate, cm3/sec
 = length, m
 = drinage area length, m
 = drinage area width, m
Greek symbols
 = oil viscosity, cp











