Difference between revisions of "Category: OptiFrac"
(→Greek symbols) |
(→Superscripts) |
||
Line 150: | Line 150: | ||
===Superscripts=== | ===Superscripts=== | ||
+ | :opt = optimal | ||
+ | :pss = pseudo-steady state | ||
:ss = steady state | :ss = steady state | ||
− | |||
− | |||
===Subscripts=== | ===Subscripts=== |
Revision as of 13:48, 16 August 2018
Contents
Brief
optiFrac is a single well fracture design optimization tool.
For the given set of reservoir and proppant properties optiFrac calculates maximum achievable well productivity index (JD) and required fracture geometry.
In production optimization of hydraulic fracturing, it is important to recognize that for a fixed proppant volume, fracture length and fracture width compete to each other. Consequently, there is an optimum fracture length and width that would maximize the dimensionless productivity index of the fractured well [1]. Unified Fracture Design provides a methodology whereby for any given proppant volume the best combination of width and length could be determined [2].
optiFrac is available online at www.pengtools.com and in AppStore for iPad.
Typical applications
- Optimization of hydraulic fracturing with Unified Fracture Design[2]
- Understanding post-fracturing production performance
- Design Sensitivity Studies and Benchmarking
- Optimum fracture design parameters determination:
- Dimensionless productivity index, JD .
- Dimensionless Fracture conductivity, CfD .
- Fracture half length, xf .
- Fracture width, wf .
- Fracture penetration, Ix .
Main features
- Plot of JD as a function of CfD and Ix as parameter.
- Plot of JD as a function of CfD and Np as parameter.
- Design optimization curve which corresponds to the maximum JD values for different Np.
- Design Optimum Point at which the dimensionless productivity index, JD, is maximized for the given proppant, fracture and reservoir parameters.
- Physical constraints envelope.
- Proppant library with predefined proppant properties.
- Users Data Worksheet for benchmarking vs actual.
Interface features
- Save and share models with colleagues
- Last saved model on current computer and browser is automatically opened
- Metric and US oilfield units
- Save as image and print plots by means of chart context menu (button at the upper-right corner of chart)
- Download pdf report with input parameters, calculated values and plots
- Select and copy results to Excel or other applications
Math & Physics
- - penetration ratio [2],
- - dimensionless fracture conductivity [2],
- - proppant numer [2],
- - pseudo-steady state equation for finite-conductivity fractured wells [1],
- - steady state equation for finite-conductivity fractured wells [1],
- - shape factor [1].
Type Curves
The Type Curves shows the dimensionless productivity index, JD, at steady and pseudo-steady state as function of CfD, using Ix as parameter (red curves) and overlapping with the type curve with Np as parameter (black curves).
The green curve along the maximum points for different Np values is “Design Optimization Curve”[1]. This curve represents the target of the designs of the fracture treatments in a dimensionless form.
Type Curves were obtained, through seven hundred runs with a numerical simulator, modeling a fractured well in a closed square reservoir [1]. For infinite and finite fracture conductivities, the shape factors, CA, can be calculated if the PD is known for a specific value of Ix. The PD value obtained by numerical simulations. After knowing CA (which would be a function of Ix), f-function values can be calculated if PD is known for a specific dimensionless fracture conductivity CfD and fracture penetration Ix.
Flow Diagram
Workflow
1. Calculate the Np:
- the volume of the reservoir
- the fracture permeability
- the proppant mass in the pay zone
- the fracture volume in the pay zone
- the proppant number
2. Read CfDopt, Ixopt, JDopt from the Design Optimization Curve of the Type Curve
3. Calculate optimum fracture half-length and width:
- the fracture height
Physical Constraints
It is important to mention that the Design Optimization Curve could give unrealistic fracture geometry depending on the reservoir permeability, reservoir mechanical properties and target Np. The two most common scenarios are [1]:
- The required net pressure for the fracture geometry is too high - “maximum net pressure curve”,
- Fracture width is too small (fracture too narrow) - “minimum width curve”.
The area between the “minimum width curve” and the “maximum net pressure curve” is the “working area” (highlighted in yellow) of the whole type curve for the specific rock mechanical properties, reservoir and proppant properties used. Any fracture design for this specific case should be located on the “optimum design curve” anywhere in this working area depending on the desired Np[1].
Maximum net pressure
The maximum net pressure during the fracturing treatment should provide a surface pressure less than a certain value (which is surface pressure operational limit) [1].
Minimum fracture width
Fracture propped width should be greater than N times mean proppant diameter (to provide at least N proppant layers in the fracture after closure)[1]. N=3 in the optiFrac.
Discussion
Nomenclature
- = dimensionless fracture conductivity, dimensionless
- = shape factor, dimensionless
- = Young's Modulus, psia
- = f-function, dimensionless
- = proppant permeability reduction due to gel damage, %
- = height, ft
- = penetration ratio, dimensionless
- = dimensionless productivity index, dimensionless
- = permeability, md
- = mass, lbm
- = dimensionless proppant number, dimensionless
- = out of the zone growth, 0% - no growth, 50% - half of proppant is out of zone
- = dimensionless pressure (based on average pressure), dimensionless
- = net pressure, psia
- = specific gravity, dimensionless
- = volume, ft3
- = width, ft
- = drainage area, ft2
- = fracture half-length, ft
Greek symbols
- = dry to wet width ratio at the end of pumping, usually 0.5-0.7
- = geometric factor in vertical direction, 0.75 for PKN model, 1 for KGD model
- = Poisson's ratio, dimensionless
- = porosity, fraction
- = 3.1415
Superscripts
- opt = optimal
- pss = pseudo-steady state
- ss = steady state
Subscripts
- f = fracture
- e = external
- r = reservoir
- prop = proppant
- net = net
- max = maximum
- gross = gross
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Rueda, J.I.; Mach, J.; Wolcott, D. (2004). "Pushing Fracturing Limits to Maximize Producibility in Turbidite Formations in Russia" (SPE-91760-MS). Society of Petroleum Engineers.
- ↑ 2.0 2.1 2.2 2.3 2.4 Economides, Michael J.; Oligney, Ronald; Valko, Peter (2002). Unified Fracture Design: Bridging the Gap Between Theory and Practice. Alvin, Texas: Orsa Press.
Pages in category "OptiFrac"
The following 6 pages are in this category, out of 6 total.