Difference between revisions of "3 Phase IPR"

From wiki.pengtools.com
Jump to: navigation, search
(Nomenclature)
(3 Phase IPR calculation example)
 
(8 intermediate revisions by the same user not shown)
Line 20: Line 20:
  
 
==[[3 Phase IPR]] calculation example==
 
==[[3 Phase IPR]] calculation example==
[[File:3 Phase IPR calculation example.png|thumb|right|400px| Figure.1 [https://www.pengtools.com/pqPlot?paramsToken=73eca3000d5f28d661700c874ebcf1f1 3 Phase IPR calculation example]]]
 
 
Following the well #1 example given by Brown<ref name=KermitBrown1984 />on Figure 5.8, page 191:
 
Following the well #1 example given by Brown<ref name=KermitBrown1984 />on Figure 5.8, page 191:
===Given:===
 
:<math>P_r</math> = 2550 psi
 
:<math>P_b</math> = 2100 psi
 
Test data:
 
:<math>P_{wf}</math> = 2300 psi
 
:<math>q_t</math> = 500 b/d
 
  
===Calculate:===
+
''In progress ...''
Determine the [[3 Phase IPR]] curves for F<sub>w</sub>=0, 0.25, 0.5, 0.75, and 1.
 
===Solution:===
 
 
 
The problem was run through [[:Category:PQplot | PQplot]] software for different values of watercut.
 
 
 
Result [[3 Phase IPR]] curves are shown on '''Fig.1'''. Points indicate results obtained by Brown <ref name=KermitBrown1984 />.
 
 
 
The  [[:Category:PQplot|PQplot]] model from this example is available online by the following link: [https://www.pengtools.com/pqPlot?paramsToken=73eca3000d5f28d661700c874ebcf1f1 3 Phase IPR calculation example]
 
  
 
== Nomenclature  ==
 
== Nomenclature  ==
:<math> B</math> = volume factor, dimensionless
+
:<math> B</math> = volume factor, bbl/stb oil; bbl/scf gas
:<math> GLR</math> = gas liquid ratio, ? scf / stb
+
:<math> GLR</math> = gas liquid ratio, scf / bbl
 
:<math> q </math> = flowing rate, stb/d  
 
:<math> q </math> = flowing rate, stb/d  
 
:<math> R</math> = solution gas ration, scf / stb
 
:<math> R</math> = solution gas ration, scf / stb
Line 47: Line 32:
 
:<math> VF </math> = volume factor, bbl/stb
 
:<math> VF </math> = volume factor, bbl/stb
 
:<math> WCUT</math> = water cut, fraction
 
:<math> WCUT</math> = water cut, fraction
 
 
 
===Subscripts===
 
===Subscripts===
 +
:g = gas<BR/>
 
:o = oil<BR/>
 
:o = oil<BR/>
:sc = standard conditions
+
:sc = standard conditions<BR/>
 
:t = total<BR/>
 
:t = total<BR/>
 
:w = water<BR/>
 
:w = water<BR/>

Latest revision as of 07:51, 17 April 2019

Three-phase Inflow Performance Relationship

3 Phase IPR Curve [1]

3 Phase IPR is an IPR curve calculated on the basis of total barrels of produced fluid, including gas.

3 Phase IPR curve is used in Pump Design software for pump sizing.

Math and Physics

The volume of 1 stb of liquid plus associated gas at any pressure and temperature is given by[1]:

 VF=WCUT\ B_w + (1-WCUT)\ B_o + (GLR\ - (1-WCUT)R_s - WCUT\ R_{sw})B_g [1]


The total volume of produced fluid rate (liquid plus gas) at any conditions of pressure and temperature:

 V=q_{t_{sc}} \times VF [1]

 q_{t_{sc}} is calculated as usual using:

3 Phase IPR calculation example

Following the well #1 example given by Brown[1]on Figure 5.8, page 191:

In progress ...

Nomenclature

 B = volume factor, bbl/stb oil; bbl/scf gas
 GLR = gas liquid ratio, scf / bbl
 q = flowing rate, stb/d
 R = solution gas ration, scf / stb
 V = total volume of produced fluid rate (inducing gas), bbl/d
 VF = volume factor, bbl/stb
 WCUT = water cut, fraction

Subscripts

g = gas
o = oil
sc = standard conditions
t = total
w = water

References

  1. 1.0 1.1 1.2 1.3 1.4 Brown, Kermit (1984). The Technology of Artificial Lift Methods. Volume 4. Production Optimization of Oil and Gas Wells by Nodal System Analysis. Tulsa, Oklahoma: PennWellBookss. 

See also

IPR
Vogel's IPR
Composite IPR
Darcy's law