Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
												 (→Math & Physics)  | 
				 (→Brief)  | 
				||
| (19 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
[[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]]  | [[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]]  | ||
| − | [[6/π stimulated well potential |6/π]] is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing.  | + | [[6/π stimulated well potential |6/π]] is the maximum possible stimulation well potential for pseudo steady state linear flow in a square well spacing.  | 
==Math & Physics==  | ==Math & Physics==  | ||
| Line 12: | Line 12: | ||
:<math> \frac{dP}{dt} =const\ for \ \forall x </math>  | :<math> \frac{dP}{dt} =const\ for \ \forall x </math>  | ||
| − | From Diffusivity Equation:  | + | From [[Diffusivity Equation]]:  | 
:<math>\frac{d^2P}{dx^2}=\frac{\phi \mu c}{k} \frac{dP}{dt}</math> ( 1 )  | :<math>\frac{d^2P}{dx^2}=\frac{\phi \mu c}{k} \frac{dP}{dt}</math> ( 1 )  | ||
| Line 19: | Line 19: | ||
:<math> q/2 =\frac{dV}{dt}</math>  | :<math> q/2 =\frac{dV}{dt}</math>  | ||
| + | |||
| + | :<math>c=\frac{1}{V} \frac{dV}{dP}</math>  | ||
:<math> V =y_e*h*x_e/2*\phi</math>  | :<math> V =y_e*h*x_e/2*\phi</math>  | ||
| − | |||
| − | |||
:<math> q/2 =c V\frac{dP}{dt} = c y_e h x_e/2 \phi \frac{dP}{dt}</math>  | :<math> q/2 =c V\frac{dP}{dt} = c y_e h x_e/2 \phi \frac{dP}{dt}</math>  | ||
| Line 48: | Line 48: | ||
:<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) +  P_{wf} \right ) dx}{\int   \limits_{0}^{x_e/2}dx} = \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} +  P_{wf} </math>  | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) +  P_{wf} \right ) dx}{\int   \limits_{0}^{x_e/2}dx} = \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} +  P_{wf} </math>  | ||
| − | :<math> \bar P - P_{wf} = \frac{q \mu}{2 k x_e y_e h} \frac{\frac{1}{3} \frac{x_e^3}{8} -\frac{  | + | :<math> \bar P - P_{wf} = \frac{q \mu}{2 k x_e y_e h} \frac{\frac{1}{3} \frac{x_e^3}{8} -\frac{x_e}{2} \frac{x_e^2}{4}}{\frac{x_e}{2}} = \frac{q \mu}{12 k h} \frac{x_e}{y_e}</math>  | 
:<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{12 k h}{q \mu} \frac{y_e}{x_e} = \frac{6 y_e}{\pi x_e}=\frac{6}{\pi}</math>  | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{12 k h}{q \mu} \frac{y_e}{x_e} = \frac{6 y_e}{\pi x_e}=\frac{6}{\pi}</math>  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==See also==  | ==See also==  | ||
| + | [[4/π stimulated well potential]]<BR/>  | ||
| + | [[JD]]<BR/>  | ||
[[:Category:optiFrac | optiFrac]]<BR/>  | [[:Category:optiFrac | optiFrac]]<BR/>  | ||
[[:Category:fracDesign | fracDesign]]<BR/>  | [[:Category:fracDesign | fracDesign]]<BR/>  | ||
| Line 100: | Line 62: | ||
:<math> A </math> = cross-sectional area, cm2  | :<math> A </math> = cross-sectional area, cm2  | ||
| + | :<math> c</math> = total compressibility, atm-1  | ||
:<math> h </math> = thickness, m  | :<math> h </math> = thickness, m  | ||
| + | :<math> J_D</math> = dimensionless productivity index, dimensionless  | ||
:<math> k</math> = permeability, d  | :<math> k</math> = permeability, d  | ||
:<math> P </math> = pressure, atm  | :<math> P </math> = pressure, atm  | ||
:<math> P_i </math> = initial pressure, atm  | :<math> P_i </math> = initial pressure, atm  | ||
| + | :<math> P_wf </math> = well flowing pressure, atm  | ||
:<math> \bar P</math> = average pressure, atm  | :<math> \bar P</math> = average pressure, atm  | ||
:<math> q </math> = flow rate, cm<sup>3</sup>/sec  | :<math> q </math> = flow rate, cm<sup>3</sup>/sec  | ||
| + | :<math> V</math> = one wing volume, m3  | ||
:<math> x </math> = length, m  | :<math> x </math> = length, m  | ||
:<math> x_e</math> = drinage area length, m  | :<math> x_e</math> = drinage area length, m  | ||
| Line 112: | Line 78: | ||
===Greek symbols===  | ===Greek symbols===  | ||
| − | :<math> \mu </math> =   | + | :<math> \phi </math> = porosity, fraction   | 
| + | :<math> \mu </math> =viscosity, cp  | ||
| + | |||
| + | [[Category:pengtools]]  | ||
[[Category:Technology]]  | [[Category:Technology]]  | ||
[[Category:optiFrac]]  | [[Category:optiFrac]]  | ||
[[Category:optiFracMS]]  | [[Category:optiFracMS]]  | ||
[[Category:fracDesign]]  | [[Category:fracDesign]]  | ||
| + | |||
| + | {{#seo:  | ||
| + | |title=Hydraulic fracturing formulas 6/π  | ||
| + | |titlemode= replace  | ||
| + | |keywords=hydraulic fracturing, hydraulic fracturing formulas, well potential  | ||
| + | |description=Hydraulic fracturing formulas maximum possible stimulation well potential for pseudo steady state linear flow 6/π  | ||
| + | }}  | ||
Latest revision as of 06:40, 10 December 2018
Brief
6/π is the maximum possible stimulation well potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Diffusivity Equation:
 ( 1 )
From Material Balance:
 ( 2 )
( 2 ) - > ( 1 ) :
 ( 3 )
Integrating ( 3 ):
 must satisfy boundary condition: 
 ( 4 )
Integrating ( 4 ):
 ( 5 )
Since average pressure is: 
:
See also
4/π stimulated well potential
JD
 optiFrac
 fracDesign
Production Potential
Nomenclature
 = cross-sectional area, cm2
 = total compressibility, atm-1
 = thickness, m
 = dimensionless productivity index, dimensionless
 = permeability, d
 = pressure, atm
 = initial pressure, atm
 = well flowing pressure, atm
 = average pressure, atm
 = flow rate, cm3/sec
 = one wing volume, m3
 = length, m
 = drinage area length, m
 = drinage area width, m
Greek symbols
 = porosity, fraction 
 =viscosity, cp










