Difference between revisions of "6/π stimulated well potential"
From wiki.pengtools.com
(→Math & Physics) |
(→Brief) |
||
(70 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
[[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]] | [[File:fracture linear flow.png|thumb|right|300px| Stimulated well drainage]] | ||
− | [[6/π stimulated well potential |6/π]] is the maximum possible stimulation potential for pseudo steady state linear flow in a square well spacing. | + | [[6/π stimulated well potential |6/π]] is the maximum possible stimulation well potential for pseudo steady state linear flow in a square well spacing. |
==Math & Physics== | ==Math & Physics== | ||
Line 8: | Line 8: | ||
Pseudo steady state flow boundary conditions: | Pseudo steady state flow boundary conditions: | ||
− | :<math> | + | :<math>\left. \frac{dP}{dx} \right|_{x=x_e/2} = \left. \frac{dP}{dx} \right|_{x=-x_e/2} = 0</math> |
:<math> \frac{dP}{dt} =const\ for \ \forall x </math> | :<math> \frac{dP}{dt} =const\ for \ \forall x </math> | ||
− | From | + | From [[Diffusivity Equation]]: |
− | :<math>\frac{d | + | :<math>\frac{d^2P}{dx^2}=\frac{\phi \mu c}{k} \frac{dP}{dt}</math> ( 1 ) |
− | From | + | From Material Balance: |
− | :<math> | + | :<math> q/2 =\frac{dV}{dt}</math> |
− | :<math> | + | :<math>c=\frac{1}{V} \frac{dV}{dP}</math> |
− | :<math> | + | :<math> V =y_e*h*x_e/2*\phi</math> |
− | + | :<math> q/2 =c V\frac{dP}{dt} = c y_e h x_e/2 \phi \frac{dP}{dt}</math> | |
− | + | :<math> \frac{dP}{dt} = \frac{q}{2 c y_e h \phi} \frac{2}{x_e}</math> ( 2 ) | |
− | + | ( 2 ) - > ( 1 ) : | |
− | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{ | + | :<math>\frac{d^2P}{dx^2}=\frac{q \mu}{2 k y_e h} \frac{2}{x_e}</math> ( 3 ) |
+ | |||
+ | Integrating ( 3 ): | ||
+ | |||
+ | :<math>\frac{dP}{dx}=\frac{q \mu}{2 k y_e h} \frac{2}{x_e} x + c_1</math> | ||
+ | |||
+ | :<math>c_1</math> must satisfy boundary condition: <math>c_1 = - \frac{q \mu}{2 k y_e h}</math> | ||
+ | |||
+ | :<math>\frac{dP}{dx}=\frac{q \mu}{k x_e y_e h} \left ( x- \frac{x_e}{2} \right )</math> ( 4 ) | ||
+ | |||
+ | Integrating ( 4 ): | ||
+ | |||
+ | :<math>P - P_{wf} = \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right )</math> ( 5 ) | ||
+ | |||
+ | Since average pressure is: <math>\bar P = \frac{\int P dx}{\int dx}</math>: | ||
+ | |||
+ | :<math> \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q \mu}{k x_e y_e h} \left ( \frac{x^2}{2} - \frac{x x_e}{2} \right ) + P_{wf} \right ) dx}{\int \limits_{0}^{x_e/2}dx} = \frac{q \mu}{2 k x_e y_e h} \left. \frac{\frac{x^3}{3} - x_e \frac{x^2}{2}}{x} \right|_{x=0}^{x=x_e/2} + P_{wf} </math> | ||
+ | |||
+ | :<math> \bar P - P_{wf} = \frac{q \mu}{2 k x_e y_e h} \frac{\frac{1}{3} \frac{x_e^3}{8} -\frac{x_e}{2} \frac{x_e^2}{4}}{\frac{x_e}{2}} = \frac{q \mu}{12 k h} \frac{x_e}{y_e}</math> | ||
+ | |||
+ | :<math>J_D=\frac{q \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q \mu}{2 \pi k h} \frac{12 k h}{q \mu} \frac{y_e}{x_e} = \frac{6 y_e}{\pi x_e}=\frac{6}{\pi}</math> | ||
==See also== | ==See also== | ||
+ | [[4/π stimulated well potential]]<BR/> | ||
+ | [[JD]]<BR/> | ||
[[:Category:optiFrac | optiFrac]]<BR/> | [[:Category:optiFrac | optiFrac]]<BR/> | ||
[[:Category:fracDesign | fracDesign]]<BR/> | [[:Category:fracDesign | fracDesign]]<BR/> | ||
Line 40: | Line 62: | ||
:<math> A </math> = cross-sectional area, cm2 | :<math> A </math> = cross-sectional area, cm2 | ||
+ | :<math> c</math> = total compressibility, atm-1 | ||
:<math> h </math> = thickness, m | :<math> h </math> = thickness, m | ||
+ | :<math> J_D</math> = dimensionless productivity index, dimensionless | ||
:<math> k</math> = permeability, d | :<math> k</math> = permeability, d | ||
:<math> P </math> = pressure, atm | :<math> P </math> = pressure, atm | ||
:<math> P_i </math> = initial pressure, atm | :<math> P_i </math> = initial pressure, atm | ||
+ | :<math> P_wf </math> = well flowing pressure, atm | ||
:<math> \bar P</math> = average pressure, atm | :<math> \bar P</math> = average pressure, atm | ||
:<math> q </math> = flow rate, cm<sup>3</sup>/sec | :<math> q </math> = flow rate, cm<sup>3</sup>/sec | ||
+ | :<math> V</math> = one wing volume, m3 | ||
:<math> x </math> = length, m | :<math> x </math> = length, m | ||
:<math> x_e</math> = drinage area length, m | :<math> x_e</math> = drinage area length, m | ||
Line 52: | Line 78: | ||
===Greek symbols=== | ===Greek symbols=== | ||
− | :<math> \mu </math> = | + | :<math> \phi </math> = porosity, fraction |
+ | :<math> \mu </math> =viscosity, cp | ||
+ | |||
+ | [[Category:pengtools]] | ||
[[Category:Technology]] | [[Category:Technology]] | ||
[[Category:optiFrac]] | [[Category:optiFrac]] | ||
[[Category:optiFracMS]] | [[Category:optiFracMS]] | ||
[[Category:fracDesign]] | [[Category:fracDesign]] | ||
+ | |||
+ | {{#seo: | ||
+ | |title=Hydraulic fracturing formulas 6/π | ||
+ | |titlemode= replace | ||
+ | |keywords=hydraulic fracturing, hydraulic fracturing formulas, well potential | ||
+ | |description=Hydraulic fracturing formulas maximum possible stimulation well potential for pseudo steady state linear flow 6/π | ||
+ | }} |
Latest revision as of 06:40, 10 December 2018
Brief
6/π is the maximum possible stimulation well potential for pseudo steady state linear flow in a square well spacing.
Math & Physics
Pseudo steady state flow boundary conditions:
From Diffusivity Equation:
- ( 1 )
From Material Balance:
- ( 2 )
( 2 ) - > ( 1 ) :
- ( 3 )
Integrating ( 3 ):
- must satisfy boundary condition:
- ( 4 )
Integrating ( 4 ):
- ( 5 )
Since average pressure is: :
See also
4/π stimulated well potential
JD
optiFrac
fracDesign
Production Potential
Nomenclature
- = cross-sectional area, cm2
- = total compressibility, atm-1
- = thickness, m
- = dimensionless productivity index, dimensionless
- = permeability, d
- = pressure, atm
- = initial pressure, atm
- = well flowing pressure, atm
- = average pressure, atm
- = flow rate, cm3/sec
- = one wing volume, m3
- = length, m
- = drinage area length, m
- = drinage area width, m
Greek symbols
- = porosity, fraction
- =viscosity, cp