Difference between revisions of "Petroleum Engineering Quiz"

From wiki.pengtools.com
Jump to: navigation, search
(Petroleum Engineering Quiz)
(Petroleum Engineering Quiz)
 
(26 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Petroleum Engineering Quiz==
 
==Petroleum Engineering Quiz==
[[File:Petroleum Engineering Quiz.png|thumb|right|400px| Petroleum Engineering Quiz]]
+
[[File:Petroleum Engineering Quiz.png|thumb|right|300px|link=https://t.me/QuizBot?start=EEacLvUP| Petroleum Engineering Quiz]]
  
100 tough [[Petroleum Engineering |petroleum engineering]] questions are waiting for you!
+
Refresh your knowledge and pick up new ideas to be more successful with your [[Petroleum Engineering#Petroleum_Engineering_Career_Advice |petroleum engineering]] career.
  
Refresh your knowledge and pick up new ideas to be more successful with your [[Petroleum Engineering |petroleum engineering]] career.
+
100 tough [[Petroleum Engineering |petroleum engineering]] questions are waiting for you!
  
==New Petroleum Engineering Workflow==
+
Scores above 80% will be awarded with the branded certificate form pengtools!
  
# Assess the current gas for [[oilfield]] performance. What is the current oil and gas production? Get organized with the available oil and gas production data.
+
===How this quiz may help you:===
# Calculate the [[Production Potential]] and identify the performance gaps in a form of [[:Category:Enhancement List| Enhancement List]].
 
# Close the performance gaps by executing identified [[Enhancement]]s.
 
# Track the benefits achieved with the [[Enhancement Tracking]].
 
  
Such a workflow can be applied both on a [[well]] level and on a [[oilfield]] [[pattern]] level. The petroleum engineer task is to keep [[well]]s at potential and [[pattern]]s balanced while management should be held accountable that the prescribed actions are implemented in a timely manner<ref name=DW/>.
+
#Self development, continuous education and self satisfaction
 +
#Prepare yourself for the interview
 +
#Screen a candidate if your are hiring
  
Routine execution of described Petroleum Engineering Workflow results in more production, improved recovery and increased earnings.
+
===Notes===
 +
Please note that quiz will take up to 50 mins. You'll need a calculator. Quiz takes place in the Telegram messenger.
  
[[File:Production Potental.png|thumb|right|400px| Production Potential]]
+
----
==Petroleum Engineering Technology==
+
<BR/>
# [[Darcy's law]]
 
# Nodal Analysis
 
# Artificial Lift, especially [[Electrical Submersible Pump]]s
 
# [[Hydraulic fracturing]]
 
# Waterflooding
 
  
Petroleum Engineering Technology allows achieving [[Production Potential]], which is maximum drawdown in the Lift System and maximum well's productivity index in the Completion System.
+
==[https://t.me/QuizBot?start=EEacLvUP Take my quiz]==
 +
<BR/>
 +
----
  
==Oil and Gas production optimization challenges==
+
==See Also==
The ideal, of producing and recovering at potential, is rarely obtained in practice. Reasons for this vary from company to company, but more often than not, the reason is well potentials are not known and therefore not managed. Introducing petroleum engineering workflow of maximizing oil and gas production in such oil and gas companies will usually face a  resistance in a form of excuses why not to increase production. Below are top 10.
+
*[[29+ reasons why you can not increase the production]]
[[File:IPR Curve reverses.png|thumb|right|300px| IPR Curve reverses]]
+
*[[Hydraulic fracturing]]
 +
*[[Petroleum Engineering]]
 +
*[[Petroleum Engineering Timeline]]
 +
*[[Production Potential]]
  
===Top 10 reasons why NOT to increase oil and gas production===
 
# Can not produce below the bubble point: [[IPR]] curve reverses
 
# Pulling the chokes will make production decrease
 
# Water will break through sooner
 
# Facility is full
 
# We don't have big pumps
 
# It's on order but won't be here for at least 2 months
 
# FRACs go away
 
# Casing is too small
 
# Material balance does not work
 
# This physical law works good in the theory, but can not be applied to the real fields we have here.
 
 
More reasons are given [[29+ reasons why you can not increase the production|here]]. Those challenges are not backed up with math and physics and can be overcome by petroleum engineering programs and courses held within the company.
 
 
==Petroleum Engineering Software==
 
 
To solve typical petroleum engineering problems oil and gas software can be used:
 
 
*[[:Category:PVT | PVT tool]] - create quick PVT model
 
*[[:Category:PQplot | PQplot]] - calculate Nodal analysis on wells
 
*[[:Category:sPipe | sPipe]] - calculate the pressure drop in surface pipes
 
*[[:Category:PhaseD | PhaseD]] - calculate phase diagram
 
*[[:Category:optiFrac | optiFrac]] - define the optimal fracture geometry
 
*[[:Category:optiFracMS | optiFracMS]] - calculate the pumping schedule to achieve the target geometry
 
*[[:Category:fracDesign | fracDesign]] - calculate the optimal number of fractures in horizontal well
 
*[[:Category:pumpDesign | pumpDesign]] - design a ESP to pump off the well
 
*[[:Category:onPlan | onPlan]] - fast planar fracture simulator can refine the design in complex scenarios
 
 
==Petroleum Engineering Career Advice==
 
 
Advice on managing and being more successful with your Petroleum Engineering Career<ref name=DW/>. This is a useful career advice for a student who is doing his petroleum engineering degree in a school, college, university or doing an internship. This is also helpful for the practicing engineer as a reference and a source for new ideas to make a difference on their petroleum engineering job and to increase salary.
 
 
* Calculate [[Production Potential| Potential]] and be a Performance Engineer
 
Performance is defined as the quality of results compared to potential. Therefore, for any endeavor you undertake, if you want to speak about its performance you must know its [[Production Potential| potential]]. Calculate the potential whenever possible and determine the performance gap by comparing actual results with potential<ref name=DW/>.
 
* Stop Complaining about No Data
 
You should practice showing value added opportunities with the data that is available. Special or additional data is justified on an as needed basis. If more data is needed then show what opportunity is created and how a decision can be made by collecting the data<ref name=DW/>.
 
*Focus on Opportunities and Execution
 
Look first for the "quick-hit" opportunities. Focus on action not studies. Organize the identified opportunities on a [[:Category:Enhancement List |enhancement list]], calculate [[Production Potential| potential]] and rank them based on performance gap. Make a plan to close the performance gaps based on the opportunities identified, execute the plan and track the results.
 
Engineers who work on opportunities develop a trait of making quicker decisions and accelerating the tempo of the organization, which translated into better performance<ref name=DW/>.
 
*Know-How or Technology what is most differential?
 
For the service companies its technology, for the oil companies its know-how.
 
Work to develop individual know-how and expertise in your discipline. This is done by deliberately practicing your trade at ever increasing levels of difficulty. Push the limits of your knowledge and skills, routinely, and look for feedback from colleagues, management and professional societies<ref name=DW/>.
 
 
==Petroleum Engineering Job Description==
 
 
Accountabilities:
 
 
* Keep wells at potential.
 
* Evaluation of oil and gas well potential and preparation of enhancement lists.
 
* Wells and reservoirs properties estimation: kh, JD, skin, Pres, OIIP, GIIP.
 
* Making sure consistency of data from various sources (production, fracturing, well tests)
 
* Identification well candidates for artificial lift. Design, execution, tracking.
 
* Identification well candidates for hydraulic fracturing. Design, execution, tracking.
 
* Evaluation of waterflood performance, dividing oilfield into pattens, keep patterns balanced.
 
* Converting producing well to injector, shut in inefficient injection well, increase/decrease well injection rate, add/squeeze perforations at producing or injection wells.
 
* Calculation of pipeline/facilities capacities.
 
* Preparation of the long-term and short-term oiled gas production forecasts.
 
* Preparation of well workover programs.
 
* Development of well test programs.
 
 
Petroleum engineering requirements:
 
 
* Petroleum Engineering Degree, Math Degree, Physics Degree
 
* Strong background in physics and maths
 
* Basic programming skills
 
* Analytical thinking
 
 
== See also ==
 
[[Petroleum Engineering Timeline]]
 
 
== References ==
 
<references>
 
 
<ref name=DW>
 
{{cite book
 
|last1= Wolcott |first1=Don
 
|title=Applied Waterflood Field Development
 
|date=2009
 
|publisher=Energy Tribune Publishing Inc
 
|place=Houston
 
|url=https://www.amazon.com/Applied-Waterflood-Field-Development-Wolcott/dp/0578023946/ref=sr_1_1?ie=UTF8&qid=1481788841&sr=8-1&keywords=Don+wolcott
 
|url-access=subscription
 
}}</ref>
 
 
</references>
 
  
 
[[Category:Technology]]
 
[[Category:Technology]]

Latest revision as of 14:34, 15 May 2020

Petroleum Engineering Quiz

Petroleum Engineering Quiz

Refresh your knowledge and pick up new ideas to be more successful with your petroleum engineering career.

100 tough petroleum engineering questions are waiting for you!

Scores above 80% will be awarded with the branded certificate form pengtools!

How this quiz may help you:

  1. Self development, continuous education and self satisfaction
  2. Prepare yourself for the interview
  3. Screen a candidate if your are hiring

Notes

Please note that quiz will take up to 50 mins. You'll need a calculator. Quiz takes place in the Telegram messenger.



Take my quiz



See Also