Beggs and Brill correlation
Contents
Brief
Beggs and Brill is an empirical two-phase flow correlation published in 1972 [1].
It distinguish between 4 flow regimes.
Beggs and Brill is the default VLP correlation in sPipe.
Math & Physics
Fluid flow energy balance
where
Friction factor
No slip Reynolds two phase number:
Colebrook–White [3] equation for the Darcy's friction factor:
Corrected two phase friction factor:
where
and
with constraint:
Discussion
Why Beggs and Brill?
The best correlation for the horizontal flow.— pengtools.com
Flow Diagram
Workflow HL
Determine the flow pattern:
- SEGREGATED: [2]
- TRANSITION: [2]
- INTERMITTENT: [2]
- DISTRIBUTED: [2]
Calculate
with the constraint [2]
C Uphill:
C Downhill:
- ALL: [2]
with the restriction [2]
Finally:
SEGREGATED, INTERMITTENT, DISTRIBUTED:
TRANSITION:
where: [2]
Modifications
1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup HL less than the no-slip holdup [7].
2. Use the Griffith correlation to define the bubble flow regime[7] and calculate HL.
3. Use watercut instead of WOR to account for the watercut = 100%.
Nomenclature
- = flow area, ft2
- = correlation group, dimensionless
- = formation factor, bbl/stb
- = coefficient for liquid viscosity number, dimensionless
- = pipe diameter, ft
- = depth, ft
- = correlation group, dimensionless
- = liquid holdup factor, dimensionless
- = friction factor, dimensionless
- = gas-liquid ratio, scf/bbl
- = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
- = pipe diameter number, dimensionless
- = gas velocity number, dimensionless
- = liquid viscosity number, dimensionless
- = liquid velocity number, dimensionless
- = pressure, psia
- = conversion constant equal to 32.174049, lbmft / lbfsec2
- = total liquid production rate, bbl/d
- = Reynolds number, dimensionless
- = solution gas-oil ratio, scf/stb
- = specific gravity, dimensionless
- = temperature, °R or °K, follow the subscript
- = velocity, ft/sec
- = water-oil ratio, bbl/bbl
- = gas compressibility factor, dimensionless
Greek symbols
- = absolute roughness, ft
- = viscosity, cp
- = density, lbm/ft3
- = integrated average density at flowing conditions, lbm/ft2
- = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
- = secondary correlation factor, dimensionless
Subscripts
g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water
References
- ↑ 1.0 1.1 1.2 1.3 Beggs, H. D.; Brill, J. P. (May 1973). "A Study of Two-Phase Flow in Inclined Pipes". Journal of Petroleum Technology. AIME. 255 (SPE-4007-PA).
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 Cite error: Invalid
<ref>
tag; no text was provided for refs namedBB1991
- ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws". Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
- ↑ Moody, L. F. (1944). "Friction factors for pipe flow". Transactions of the ASME. 66 (8): 671–684.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedHB
- ↑ 7.0 7.1 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0.
Cite error: <ref>
tag with name "Trina" defined in <references>
is not used in prior text.