Beggs and Brill correlation

From wiki.pengtools.com
Jump to: navigation, search

Brief

Beggs and Brill is an empirical two-phase flow correlation published in 1972 [1].

It distinguish between 4 flow regimes.

Beggs and Brill is the default VLP correlation in sPipe.

Beggs and Brill in sPipe Vs GAP

Math & Physics

Fluid flow energy balance

 -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ \frac{p}{144}}}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Friction factor

No slip Reynolds two phase number:

 Re = 1488 \times \frac {\rho_{m,ns} v_m D} { \mu_L\ C_L + \mu_g\ (1-C_L) } [2]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Corrected two phase friction factor:

 f' = f \times  e^S[2]

where

 S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^{2} + 0.01853\ ln(y)^{4}}[2]

and

 y = \frac{ C_L} { {H_L}^2 } [2]

with constraint:

 S = ln (2.2\ y - 1.2), when\ 1 \le y \le 1.2 [2]

Discussion

Why Beggs and Brill?

The best correlation for the horizontal flow.
— pengtools.com

Flow Diagram

HB Block Diagram

Workflow HL

 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT[5]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [5]
 \mu_L = \mu_o (1-WCUT) + \mu_w\ WCUT[5]
 \sigma_L = \sigma_o (1-WCUT) + \sigma_w\ WCUT[5]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o (1-WCUT) + B_w\ WCUT \right )[5]
 v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}[5]
 G_m = \rho_L \times v_{SL} + \rho_g \times  v_{SG}[5]
 v_m = v_{SL} +  v_{SG}
 C_L = \frac{v_{SL}}{v_m}
 L_1 = 316\ {C_L}^{0.302}[2]
 L_2 = 0.0009252\ {C_L}^{-2.4684}[2]
 L_3 = 0.1\ {C_L}^{-1.4516}[2]
 L_4 = 0.5\ {C_L}^{-6.738}[2]
 N_{FR} = \frac{{v_m}^2}{g_c\ D}[1]

Determine the flow pattern:

  • SEGREGATED:  (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)[2]
  • TRANSITION:  C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3[2]
  • INTERMITTENT:  (0.01 \le C_L <0.4\ \&\  L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)[2]
  • DISTRIBUTED:  (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)[2]

Calculate  H_{L(0)}:

  • SEGREGATED:  H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} [2]
  • INTERMITTENT:  H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}[2]
  • DISTRIBUTED:  H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}[2]
with the constraint  H_L \ge C_L[2]


 \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)[2]
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [2]

C Uphill:

  • SEGREGATED:  C = (1-C_L)\ ln( 0.011 \times {N_{LV}}^{3.539}\times {C_L}^{-3.768}\times {F_{FR}}^{-1.614})[2]
  • INTERMITTENT:  C = (1-C_L)\ ln( 2.96\times {N_{LV}}^{-0.4473}\times {C_L}^{0.305}\times {F_{FR}}^{0.0978})[2]
  • DISTRIBUTED:  C=0[2]

C Downhill:

with the restriction  C \ge 0 [2]

Finally:

  • SEGREGATED, INTERMITTENT, DISTRIBUTED:
 H_L = H_{L(0)} \times \psi [2]
  • TRANSITION:
 H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} [2]

where:

 A = \frac{L_3-N_{FR}}{L_3-L_2}[2]

Modifications

1. Force approach gas at low CL. If CL<0.001 Then f'=f.

2. Force approach to single phase fluid. If HL>1 Then HL=1.

3. Use calculated water density instead of the constant value of 62.4 lbm/ft3.

Nomenclature

 A = correlation variable, dimensionless
 A_p = flow area, ft2
 B = formation factor, bbl/stb
 C = correlation variable, dimensionless
 C_L = non-slip liquid holdup factor, dimensionless
 D = pipe diameter, ft
 G = total flux weight, lbm/ft2/sec
 h = depth, ft
 H_L = liquid holdup factor, dimensionless
 H_{L(0)} = liquid holdup factor when flow is horizontal, dimensionless
 f = friction factor, dimensionless
 f' = corrected friction factor, dimensionless
 GLR = gas-liquid ratio, scf/bbl
 L_1, L_2, L_3, L_4 = correlation variables, dimensionless
 N_FR = Froude number, dimensionless
 N_LV = liquid velocity number, dimensionless
 p = pressure, psia
 q_c = conversion constant equal to 32.174049, lbmft / lbfsec2
 q = flow rate, bbl/d - liquid, scf/d - gas
 Re = Reynolds number, dimensionless
 R_s = solution gas-oil ratio, scf/stb
 S = correlation variable, dimensionless
 SG = specific gravity, dimensionless
 T = temperature, °R or °K, follow the subscript
 v = velocity, ft/sec
 WCUT = watercut, fraction
 y = correlation variable, dimensionless
 z = gas compressibility factor, dimensionless

Greek symbols

 \varepsilon = absolute roughness, ft
 \mu = viscosity, cp
 \rho = density, lbm/ft3
 \bar \rho = integrated average density at flowing conditions, lbm/ft3
 \sigma = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 \psi = inclination correction factor, dimensionless
 \theta = inclination angle, ° from horizontal

Subscripts

g = gas
K = °K
L = liquid
m = gas/liquid mixture
ns = non-slip
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water

References

  1. 1.0 1.1 1.2 1.3 Beggs, H. D.; Brill, J. P. (May 1973). "A Study of Two-Phase Flow in Inclined Pipes"Paid subscription required. Journal of Petroleum Technology. AIME. 255 (SPE-4007-PA). 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 Brill, J. P.; Beggs, H. D. (1991). Two-Phase Flow In PipesPaid subscription required (6 ed.). Oklahoma: U. of Tulsa Tulsa. 
  3. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.