Difference between revisions of "4/π stimulated well potential"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
Line 27: Line 27:
  
 
<math>J_D=\frac{q B \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q B \mu}{2 \pi k h} \frac{8ky_eh}{q B \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}</math>
 
<math>J_D=\frac{q B \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q B \mu}{2 \pi k h} \frac{8ky_eh}{q B \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}</math>
 +
 +
==See also==
 +
[[:Category:optiFrac | optiFrac]]
 +
[[:Category:fracDesign | fracDesign]]
 +
 +
  
 
[[Category:Technology]]
 
[[Category:Technology]]

Revision as of 10:00, 10 September 2018

Brief

Stimulated well drainage

4/π is the maximum possible stimulation potential for steady state linear flow in a square well spacing.

Math & Physics

Steady state flow boundary conditions:

P |_{x=x_e/2} = P |_{x=-x_e/2} = P_i
 \frac{dp}{dt} =0\ for \ \forall x

From Darcy's law:

\frac{q}{2}=\frac{kA}{B \mu}\ \frac{dP}{dx}
 A =y_e*h
dP=\frac{q B \mu}{2ky_eh} dx

Integration gives: P-P_{wf}=\frac{q B \mu}{2ky_eh} x

Since average pressure is: \bar P = \frac{\int P dx}{\int dx}

 \bar P = \frac{ \int \limits_{0}^{x_e/2} \left ( \frac{q B \mu}{2ky_eh} x + P_{wf} \right ) dx}{\int dx} = \left. \frac{q B \mu}{2ky_eh} \frac{x}{2} \right|_{x=0}^{x=x_e/2} + P_{wf} = \frac{q B \mu x_e}{8ky_eh} + P_{wf}

J_D=\frac{q B \mu}{2 \pi k h} \frac{1}{( \bar P - P_{wf})} =\frac{q B \mu}{2 \pi k h} \frac{8ky_eh}{q B \mu x_e} = \frac{4y_e}{\pi x_e}=\frac{4}{\pi}

See also

optiFrac fracDesign