Difference between revisions of "Category: FracDesign"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 31: Line 31:
  
 
==Math & Physics==
 
==Math & Physics==
Hydraulic average fracture width:
 
  
:<math>w_{f,hydr,avg} = w_{f,hydr,max} \gamma</math>
+
:<math>w_{f,hydr,avg} = w_{f,hydr,max} \gamma</math> - hydraulic average fracture width
  
Hydraulic maximum fracture width:
+
:<math>w_{f,hydr,max,PKN}=9.15^{\frac{1}{(2 + 2 n)}}\ 3.98^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2.14n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n h_f^{1-n} x_f}{E'} \right )^{\frac{1}{(2 + 2 n)}}</math> - hydraulic maximum fracture width PKN (ref<ref name = HFM1995/> eq 9.53)
  
:<math>w_{f,hydr,max,PKN}=9.15^{\frac{1}{(2 + 2 n)}}\ 3.98^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2.14n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n h_f^{1-n} x_f}{E'} \right )^{\frac{1}{(2 + 2 n)}}</math> (ref<ref name = HFM1995/> eq 9.53)  
+
:<math>w_{f,hydr,max,KGD}=11.1^{\frac{1}{(2 + 2 n)}}\ 3.24^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n x_f^2}{h_f^n E'} \right )^{\frac{1}{(2 + 2 n)}}</math> - hydraulic maximum fracture width KGD (ref<ref name = HFM1995/> eq 9.55)  
  
:<math>w_{f,hydr,max,KGD}=11.1^{\frac{1}{(2 + 2 n)}}\ 3.24^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n x_f^2}{h_f^n E'} \right )^{\frac{1}{(2 + 2 n)}}</math> (ref<ref name = HFM1995/> eq 9.55)  
+
:<math>\gamma_{PKN}=\frac{\pi}{5}</math> - shape factor PKN (ref<ref name = HFM1995/> eq 9.10)
  
Shape factor:
+
:<math>\gamma_{KGD}=\frac{\pi}{4}</math> - shape factor KGD (ref<ref name = HFM1995/> eq 9.24)
  
:<math>\gamma_{PKN}=\frac{\pi}{5}</math> (ref<ref name = HFM1995/> eq 9.10)
+
:<math>E'=\frac{E}{1-\nu^2}</math> - plain strain modulus
  
:<math>\gamma_{KGD}=\frac{\pi}{4}</math> (ref<ref name = HFM1995/> eq 9.24)
+
:<math>q_i t = A_f w_{hydr,avg} + K_L 2 A_f C_L \sqrt{t} + 2 A_f S_p </math> - mass balance (ref<ref name = UFD2002/> eq 4.6)
 
 
Plain strain modulus:
 
 
 
:<math>E'=\frac{E}{1-\nu^2}</math>
 
 
 
Mass balance:
 
 
 
:<math>q_i t = A_f w_{hydr,avg} + K_L 2 A_f C_L \sqrt{t} + 2 A_f S_p </math> (ref<ref name = UFD2002/> eq 4.6)
 
  
 
==References==
 
==References==

Revision as of 08:40, 5 September 2018

Brief

pengtools fracDesign

fracDesign is a tool for designing a hydraulic fracture treatment in pengtools.

For the given set of reservoir, fluid and proppant properties fracDesign calculates the pumping schedule which will create the optimal fracture geometry to achieve maximum well’s productivity.

fracDesignis available online at www.pengtools.com.

Main features

  • PKN and KGD fracture geometry models
  • optiFrac workflow on fracture geometry optimization
  • Slurry concentration versus time pumping schedule as plot and table
  • Fracture length and width profiles vs time plots
  • Net pressure profiles vs time as plot and table
  • Practical pumping constrains and Fracture tuning options
  • Detailed output table with calculated fracture design parameters
  • Sensitivity option with benchmark to potential
  • Simulation mode: calculating the fracture geometry from the given pumping schedule

Interface features

  • "Default values" button resets input values to the default values.
  • Switch between Metric and Field units.
  • Save/load models to the files and to the user’s cloud.
  • Export pdf report containing input parameters, calculated values and the chart.
  • Share models to the public cloud or by using model’s link.
  • Continue your work from where you stopped: last saved model will be automatically opened.
  • Download the chart as an image or data and print (upper-right corner chart’s button).

Math & Physics

w_{f,hydr,avg} = w_{f,hydr,max} \gamma - hydraulic average fracture width
w_{f,hydr,max,PKN}=9.15^{\frac{1}{(2 + 2 n)}}\ 3.98^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2.14n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n h_f^{1-n} x_f}{E'} \right )^{\frac{1}{(2 + 2 n)}} - hydraulic maximum fracture width PKN (ref[1] eq 9.53)
w_{f,hydr,max,KGD}=11.1^{\frac{1}{(2 + 2 n)}}\ 3.24^{\frac{n}{(2 + 2 n)}}\ \left ( \frac{1+2n}{n}\right )^{\frac{n}{(2 + 2 n)}}\ K^{\frac{1}{(2 + 2 n)}}\ \left ( \frac{q^n x_f^2}{h_f^n E'} \right )^{\frac{1}{(2 + 2 n)}} - hydraulic maximum fracture width KGD (ref[1] eq 9.55)
\gamma_{PKN}=\frac{\pi}{5} - shape factor PKN (ref[1] eq 9.10)
\gamma_{KGD}=\frac{\pi}{4} - shape factor KGD (ref[1] eq 9.24)
E'=\frac{E}{1-\nu^2} - plain strain modulus
q_i t = A_f w_{hydr,avg} + K_L 2 A_f C_L \sqrt{t} + 2 A_f S_p - mass balance (ref[2] eq 4.6)

References

  1. 1.0 1.1 1.2 1.3 Valko, Peter; Economides, Michael J. (1995). Hydraulic fracture mechanics. Texas A & M University: John Wiley and Sons. 
  2. Economides, Michael J.; Oligney, Ronald; Valko, Peter (2002). Unified Fracture Design: Bridging the Gap Between Theory and Practice. Alvin, Texas: Orsa Press. 
  1. Rueda JI, Mach J, Wolcott D (2004) Pushing fracturing limits to maximize producibility in turbidite formations in Russia. Paper SPE 91760.
  2. Economides M.J., Hill A.D., Ehlig-Economides C., Zhu D. (2013) Petroleum production systems. Prentice Hall, NY.