Difference between revisions of "Gray correlation"

From wiki.pengtools.com
Jump to: navigation, search
(References)
(References)
Line 131: Line 131:
 
}}</ref>
 
}}</ref>
  
Kumar, N., & Lea, J. F. (2005, January 1). Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading. Society of Petroleum Engineers. doi:10.2118/92049-MS
+
<ref name=Turner>{{cite journal
 
+
  |first1=N. |last1=Kumar  
<ref name = Kumar>{{cite journal  
+
  |first2=J. F. |last2=Lea  
  |first1=N.  
 
|last1=Kumar  
 
  |first2=J. F.  
 
|last2=Lea  
 
 
  |title=Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading
 
  |title=Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading
  |journal=Transactions of the ASME
+
  |journal=Journal of Petroleum Technology
  |volume=66
+
  |number=SPE-92049-MS
|issue=8
+
  |date=January 1, 2005
|pages=671–684
+
  |url=https://www.onepetro.org/conference-paper/SPE-92049-MS
  |year=1944
+
  |url-access= subscription  
  |url=https://www.onepetro.org/journal-paper/SPE-2198-PA
+
}}</ref>
  |url-access=subscription  
 
}} </ref>
 
 
 
  
 
</references>
 
</references>

Revision as of 12:51, 6 April 2017

Brief

Gray is an empirical two-phase flow correlation published in 1974 [1].

Gray is the default VLP correlation for the gas wells in the PQplot.

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} =  \bar \rho_m + \rho_m \frac{f v_m^2 }{2 g_c D} + \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

where

 \bar \rho_m = \rho_L (1-H_g) + \rho_g H_g, slip mixture density
 \rho_m = \rho_L C_L + \rho_g (1-C_L) , no-slip mixture density

Colebrook–White [2] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon'} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[3]

The pseudo wall roughness:

 \varepsilon' = \begin{cases} 
\frac{28.5}{453.592} \frac{\sigma_L}{\rho_m v_m^2},  &\mbox{if } R \geqslant 0.007 \\
\varepsilon + R \frac{\varepsilon'-\varepsilon}{0.007}, & \mbox{if } R < 0.007 
\end{cases} , with the limit  \varepsilon' \geqslant 2.77 \times 10^{-5}[1]

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{C_L} \mu_g^{(1-C_L)}}[4]

Discussion

Why Gray correlation?

The Gray correlation was found to be the best of several initially tested ...
— Nitesh Kumar l[5]

Workflow Hg & CL

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR[4]
 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}[6]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [6]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )[6]
 v_{SG} = \frac{q_g \times 10^6}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}
 C_L = \frac{v_{SL}}{v_{SG}+v_{SL}}
 v_m = v_{SL} +  v_{SG}
 \rho_m = \rho_L C_L + \rho_g (1-C_L)
 \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}[6]
 \sigma_L = \frac{\sigma_o\ q_o + 0.617\ \sigma_w\ q_w}{q_o + 0.617\ q_w} [1]
 N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} [1]
 N_D = 453.592\ \frac{g_c (\rho_L - \rho_g) D^2}{\sigma_L } [1]
 R = \frac{v_{SL}}{v_{SG}} [1]
 B = 0.0814 \left ( 1 - 0.554\ \ln \left (1 + \frac{730 R}{R+1} \right )  \right ) [1]
 A = -2.2314 \left ( N_V \left (1 + \frac{205}{N_D} \right )  \right )^B [1]
 H_g = \frac{1-e^A}{R+1}[1]

Modifications

use watercut instead of WOR

Nomenclature

NV velocity number

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API. 
  2. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  3. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  4. 4.0 4.1 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits". Journal of Petroleum Technology. 17(04): 475–484. 
  5. Cite error: Invalid <ref> tag; no text was provided for refs named Kumar
  6. 6.0 6.1 6.2 6.3 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5. 

Cite error: <ref> tag with name "Turner" defined in <references> is not used in prior text.