Difference between revisions of "Gray correlation"
From wiki.pengtools.com
(→Workflow Hg & CL) |
(→Workflow Hg & CL) |
||
Line 35: | Line 35: | ||
:<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/> | :<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/> | ||
− | :<math> \ | + | :<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/> |
+ | |||
+ | :<math> v_{SG} = \frac{q_g \times 10^6}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math> | ||
− | :<math> | + | :<math> C_L = \frac{v_{SL}}{v_{SG}+v_{SL}}</math> |
− | :<math> v_{SL | + | :<math> v_m = v_{SL} + v_{SG} </math> |
− | :<math> | + | :<math> \rho_m = \rho_L C_L + \rho_g (1-C_L) </math> |
− | :<math> | + | :<math> \sigma_L = \frac{\sigma_o\ q_o + 0.617\ \sigma_w\ q_w}{q_o + 0.617\ q_w}</math> <ref name= Gray/> |
:<math> N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} </math><ref name= Gray/> | :<math> N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} </math><ref name= Gray/> | ||
Line 56: | Line 58: | ||
:<math> H_g = \frac{1-e^A}{R+1}</math><ref name= Gray/> | :<math> H_g = \frac{1-e^A}{R+1}</math><ref name= Gray/> | ||
− | |||
− | |||
== Modifications == | == Modifications == |
Revision as of 09:08, 5 April 2017
Contents
Brief
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
- , slip mixture density
- , no-slip mixture density
Colebrook–White [2] equation for the Darcy's friction factor:
The pseudo wall roughness:
- , with the limit [1]
Reynolds two phase number:
Discussion
Workflow Hg & CL
Modifications
Nomenclature
NV velocity number
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.
- ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws". Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
- ↑ Moody, L. F. (1944). "Friction factors for pipe flow". Transactions of the ASME. 66 (8): 671–684.
- ↑ 4.0 4.1 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits". Journal of Petroleum Technology. 17(04): 475–484.
- ↑ 5.0 5.1 5.2 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.