Difference between revisions of "Gray correlation"
From wiki.pengtools.com
(→Workflow Hg) |
(→Workflow Hg) |
||
Line 34: | Line 34: | ||
:<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/> | :<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/> | ||
+ | |||
+ | :<math> \rho_m = \rho_L C_L + \rho_g (1-C_L) </math> | ||
:<math> N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} </math><ref name= Gray/> | :<math> N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} </math><ref name= Gray/> |
Revision as of 19:04, 4 April 2017
Brief
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
- , slip mixture density
- , no-slip mixture density
Colebrook–White [2] equation for the Darcy's friction factor:
The pseudo wall roughness [1]:
- , with the limit
Reynolds two phase number:
Discussion
Workflow Hg
Nomenclature
NV velocity number
References
- ↑ 1.0 1.1 1.2 1.3 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.
- ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws". Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
- ↑ Moody, L. F. (1944). "Friction factors for pipe flow". Transactions of the ASME. 66 (8): 671–684.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedHB
- ↑ 5.0 5.1 Cite error: Invalid
<ref>
tag; no text was provided for refs namedLyons