Difference between revisions of "Gas Flowing Material Balance"

From wiki.pengtools.com
Jump to: navigation, search
(Workflow)
 
(87 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
== Brief ==
 
== Brief ==
  
[[Gas Flowing Material Balance]] is the advanced engineering technique to determine the [[Reservoirs]] GIIP and recovery as well as [[Well]]'s [[EUR]] and [[JD]].
+
[[Gas Flowing Material Balance]] '''(Gas FMB)''' is the advanced engineering technique published in '''1998''' by Louis Mattar <ref name=Mattar1998/>.  
  
[[Gas Flowing Material Balance]] is applied on the [[Well]] level given readily available well flowing data: production rate and tubing head pressure.
+
[[Gas Flowing Material Balance]] is applied to determine:
 +
* [[Reservoirs]] GIIP calculation
 +
* [[Reservoirs]] [[EUR]] calculation
 +
* [[Well]]'s [[EUR]] and [[JD]]
  
The interpretation technique is fitting the data points with the straight line to estimate GIIP and [[JD]].
+
[[Gas Flowing Material Balance]] uses readily available [[Well]] flowing data: production rate and tubing head pressure.
 +
 
 +
The interpretation technique is fitting the data points with the straight lines to calculate GIIP and [[JD]].
 +
 
 +
[[File:FMB.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]]
 +
 
 +
<center>[[Gas Flowing Material Balance]] in the [https://ep.pengtools.com/matbal/flowing-material-balance/gas E&P Portal]</center>
  
 
== Math & Physics ==
 
== Math & Physics ==
Line 24: Line 33:
 
==Discussion==
 
==Discussion==
  
well vs reservoir
+
[[Gas Flowing Material Balance]] can be applied to:
 +
*single well
 +
*multiple wells producing from the same [[Reservoirs| Reservoir]].
 +
 
 +
The X axis on the [[Gas Flowing Material Balance]] Plot can be selected as:
 +
*[[Well]] cumulative
 +
*[[Reservoirs| Reservoir]] cumulative
 +
 
 +
'''Example 1. Multiple wells producing from the same Reservoir. X axis - Wells cumulative'''
 +
[[File:FMBex1.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]]
 +
'''Example 2. Multiple wells producing from the same Reservoir. X axis - Reservoir cumulative'''
 +
[[File:FMBex2.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]]
 +
'''Example 3. Shifted Model Start (to account for gas injection)'''
 +
[[File:FMBex3.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]]
  
 
==Workflow==
 
==Workflow==
 +
# Upload the data required
 +
# Open the [[Gas Flowing Material Balance]]  tool [https://ep.pengtools.com/matbal/flowing-material-balance/gas here]
 
# Calculate the red  <math> \frac{P}{z}</math> line:
 
# Calculate the red  <math> \frac{P}{z}</math> line:
 
## Given the GIIP
 
## Given the GIIP
## Calculate <math> \frac{P}{z}=\frac{P_i}{z_i} \left (1- \frac{G_p}{GIIP}\right )</math>
+
## Calculate the <math> \frac{P}{z}=\frac{P_i}{z_i} \left (1- \frac{G_p}{GIIP}\right )</math>
 
# Calculate the orange <math> \frac{\bar{P}}{z}</math> curve:
 
# Calculate the orange <math> \frac{\bar{P}}{z}</math> curve:
 
## Given the flowing wellhead pressures, calculate the flowing bottomhole pressures, <math>P_{wf}</math>
 
## Given the flowing wellhead pressures, calculate the flowing bottomhole pressures, <math>P_{wf}</math>
Line 42: Line 66:
 
# Change the red <math> \frac{P}{z}</math> line to match the orange  <math> \frac{\bar{P}}{z}</math> curve
 
# Change the red <math> \frac{P}{z}</math> line to match the orange  <math> \frac{\bar{P}}{z}</math> curve
 
## Change the GIIP
 
## Change the GIIP
## Change the <math> \frac{P}{z}</math>
+
## Change the intitial <math> \frac{P}{z}</math>
 
# Change the flat [[JD]] gray line to match the changing [[JD]] gray line
 
# Change the flat [[JD]] gray line to match the changing [[JD]] gray line
# Save the [[Gas Flowing Material Balance]] model
+
# Save the [[Gas Flowing Material Balance| FMB]] model
 
# Move to the next well
 
# Move to the next well
===Extra Plot to find b<sub>sss</sub>===
+
===Extra Plot to find b<sub>pss</sub>===
Calculate initial pseudopressure, <math>P_{Pi}</math>
+
#Calculate the initial pseudopressure, <math>P_{Pi}</math>
Calculate material balance pseudo-time, <math>t_{ca}</math>
+
#Calculate the material balance pseudo-time, <math>t_{ca}</math>
Plot <math>\frac{P_{P_i}-P_{P_{wf}}}{q}</math> versus <math>t_{ca}</math>. The intercept gives  <math>b_{pss}</math> and <math>J_D</math>.
+
#Plot <math>\frac{P_{P_i}-P_{P_{wf}}}{q_g}</math> versus <math>t_{ca}</math>
Calculate the average reservoir pseudopressure from [[Gas Flowing Material Balance]] equation, <math>P_{\bar{P}}</math>
+
#The intercept with the Y axis gives  <math>b_{pss}</math> and <math>J_D</math>
  
=== Data required ===
+
== Data required ==
* Create [[Field]] [https://ep.pengtools.com/field/index  here]
+
 
* Upload [[Well]]s [https://ep.pengtools.com/well/upload  here]
+
{{Data required for Gas Flowing Material Balance}}
* Upload [[Daily Measures]] [https://ep.pengtools.com/daily/measures/upload  here]
 
  
 
== Nomenclature  ==
 
== Nomenclature  ==
  
:<math> A_p </math> = flow area, ft2
+
:<math> b_{pss} </math> = reservoir constant, inverse to productivity index, psia<sup>2</sup>/cP/MMscfd
:<math> B </math> = correlation group, dimensionless
+
:<math> c </math> = compressibility, psia<sup>-1</sup>
:<math> B </math> = formation factor, bbl/stb
+
:<math> GIIP </math> = gas initially in place, MMscf
:<math> C </math> = coefficient for liquid viscosity number, dimensionless
+
:<math> G_p </math> = cumulative gas produced, MMscf
:<math> D </math> = pipe diameter, ft
+
:<math> J </math> = gas productivity index, MMscfd/(psia<sup>2</sup>/cP)
:<math> h </math> = depth, ft
+
:<math> J_D </math> = dimensionless productivity index, dimensionless
:<math> H </math> = correlation group, dimensionless
+
:<math> kh</math> = permeability times thickness, md*ft
:<math> H_L </math> = liquid holdup factor, dimensionless
+
:<math> P </math> = pressure, psia
:<math> f </math> = friction factor, dimensionless
+
:<math> \bar{P} </math> = average reservoir pressure, psia
:<math> GLR </math> = gas-liquid ratio, scf/bbl
+
:<math> P_P </math> = pseudopressure, psia<sup>2</sup>/cP
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
+
:<math> q_g </math> = gas rate, MMscfd
:<math> N_D </math> = pipe diameter number, dimensionless
+
:<math> t </math> = time, day
:<math> N_GV </math> = gas velocity number, dimensionless
+
:<math> t_{ca} </math> = material balance pseudotime for gas, day
:<math> N_L </math> = liquid viscosity number, dimensionless
+
:<math> T </math> = temperature, °R
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
 
:<math> q </math> = total liquid production rate, bbl/d
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
 
:<math> SG </math> = specific gravity, dimensionless
 
:<math> T </math> = temperature, °R or °K, follow the subscript
 
:<math> v </math> = velocity, ft/sec
 
:<math> WOR </math> = water-oil ratio, bbl/bbl
 
 
:<math> z </math> = gas compressibility factor, dimensionless
 
:<math> z </math> = gas compressibility factor, dimensionless
  
 
===Greek symbols===
 
===Greek symbols===
  
:<math> \varepsilon </math> = absolute roughness, ft
 
 
:<math> \mu </math> = viscosity, cp
 
:<math> \mu </math> = viscosity, cp
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 
:<math> \psi </math> = secondary correlation factor, dimensionless
 
  
 
===Subscripts===
 
===Subscripts===
  
 
:g = gas<BR/>
 
:g = gas<BR/>
:K = °K<BR/>
+
:i = initial<BR/>
:L = liquid<BR/>
 
:m = gas/liquid mixture<BR/>
 
:o = oil<BR/>
 
 
:R = °R<BR/>
 
:R = °R<BR/>
:SL = superficial liquid<BR/>
+
:wf = well flowing <BR/>
:SG = superficial gas<BR/>
 
:w = water<BR/>
 
  
 
== References ==
 
== References ==
  
 
<references>
 
<references>
 +
<ref name=Mattar1998>{{cite journal
 +
|last1=Mattar|first1=L.
 +
|last2= McNeil |first2=R.
 +
|title=The "Flowing" Gas Material Balance
 +
|publisher=Petroleum Society of Canada
 +
|journal=Journal of Canadian Petroleum Technology
 +
|date=1998
 +
|url=https://ihsmarkit.com/pdf/flowing-gas-material-bal-paper_228615110913049832.pdf
 +
}}</ref>
  
 
<ref name=Mattar2005>{{cite journal
 
<ref name=Mattar2005>{{cite journal
Line 124: Line 136:
  
 
[[Category:E&P Portal]]
 
[[Category:E&P Portal]]
 +
 +
{{#seo:
 +
|title=Gas Flowing Material Balance for GIIP calculation
 +
|titlemode= replace
 +
|keywords=giip calculation, reservoir engineering, flowing material balance, petroleum engineering, equation
 +
|description=Gas Flowing Material Balance is the advanced engineering technique applied to calculate reservoirs and wells GIIP and productivity index.
 +
}}

Latest revision as of 18:00, 3 November 2018

Brief

Gas Flowing Material Balance (Gas FMB) is the advanced engineering technique published in 1998 by Louis Mattar [1].

Gas Flowing Material Balance is applied to determine:

Gas Flowing Material Balance uses readily available Well flowing data: production rate and tubing head pressure.

The interpretation technique is fitting the data points with the straight lines to calculate GIIP and JD.

FMB.png

Gas Flowing Material Balance in the E&P Portal

Math & Physics

Combining the gas pseudo state flow equation and the Gas Material Balance equation to get Gas Flowing Material Balance equation:

 P_{\bar{P}}= P_{P_{wf}} + q_g b_{pss} [2]

where

 b_{pss} = \frac{1422 \times 10^3\ T_R}{kh\ J_D}

Material balance pseudo-time:

 t_{ca} = \frac{\mu_{gi} c_{gi}}{q_g}\int\limits_{0}^{t}\frac{q_g}{\bar{\mu_g} \bar{c_g}}dt

Discussion

Gas Flowing Material Balance can be applied to:

  • single well
  • multiple wells producing from the same Reservoir.

The X axis on the Gas Flowing Material Balance Plot can be selected as:

Example 1. Multiple wells producing from the same Reservoir. X axis - Wells cumulative FMBex1.png Example 2. Multiple wells producing from the same Reservoir. X axis - Reservoir cumulative FMBex2.png Example 3. Shifted Model Start (to account for gas injection) FMBex3.png

Workflow

  1. Upload the data required
  2. Open the Gas Flowing Material Balance tool here
  3. Calculate the red  \frac{P}{z} line:
    1. Given the GIIP
    2. Calculate the  \frac{P}{z}=\frac{P_i}{z_i} \left (1- \frac{G_p}{GIIP}\right )
  4. Calculate the orange  \frac{\bar{P}}{z} curve:
    1. Given the flowing wellhead pressures, calculate the flowing bottomhole pressures, P_{wf}
    2. Convert the flowing pressures to pseudopressures, P_{P_{wf}}
    3. Given the JD, calculate the  b_{pss}
    4. Calculate the pseudopressure,  P_{\bar{P}}
    5. Convert the pseudopressure to pressure,  \bar{P}
    6. Calculate the  \frac{\bar{P}}{z}
  5. Calculate the gray JD curve:
    1. Calculate the gas productivity index, J=\frac{q_g}{P_{\bar{P}}-P_{P_{wf}}}
    2. Calculate the JD, J_D=\frac{1422 \times 10^3\ T_R}{kh} J
  6. Change the red  \frac{P}{z} line to match the orange  \frac{\bar{P}}{z} curve
    1. Change the GIIP
    2. Change the intitial  \frac{P}{z}
  7. Change the flat JD gray line to match the changing JD gray line
  8. Save the FMB model
  9. Move to the next well

Extra Plot to find bpss

  1. Calculate the initial pseudopressure, P_{Pi}
  2. Calculate the material balance pseudo-time, t_{ca}
  3. Plot \frac{P_{P_i}-P_{P_{wf}}}{q_g} versus t_{ca}
  4. The intercept with the Y axis gives b_{pss} and J_D

Data required

In case you need to calculate the flowing bottomhole pressure from the wellhead pressure:

In case you want to add the static reservoir pressures on the FMB Plot:

Nomenclature

 b_{pss} = reservoir constant, inverse to productivity index, psia2/cP/MMscfd
 c = compressibility, psia-1
 GIIP = gas initially in place, MMscf
 G_p = cumulative gas produced, MMscf
 J = gas productivity index, MMscfd/(psia2/cP)
 J_D = dimensionless productivity index, dimensionless
 kh = permeability times thickness, md*ft
 P = pressure, psia
 \bar{P} = average reservoir pressure, psia
 P_P = pseudopressure, psia2/cP
 q_g = gas rate, MMscfd
 t = time, day
 t_{ca} = material balance pseudotime for gas, day
 T = temperature, °R
 z = gas compressibility factor, dimensionless

Greek symbols

 \mu = viscosity, cp

Subscripts

g = gas
i = initial
R = °R
wf = well flowing

References

  1. Mattar, L.; McNeil, R. (1998). "The "Flowing" Gas Material Balance" (PDF). Journal of Canadian Petroleum Technology. Petroleum Society of Canada. 
  2. Mattar, L.; Anderson, D (2005). "Dynamic Material Balance (Oil or Gas-In-Place Without Shut-Ins)" (PDF). CIPC.