Difference between revisions of "Gas Flowing Material Balance"
(→Math & Physics) |
|||
(164 intermediate revisions by 2 users not shown) | |||
Line 2: | Line 2: | ||
== Brief == | == Brief == | ||
− | [[Gas Flowing Material Balance]] is the advanced engineering technique | + | [[Gas Flowing Material Balance]] '''(Gas FMB)''' is the advanced engineering technique published in '''1998''' by Louis Mattar <ref name=Mattar1998/>. |
− | [[Gas Flowing Material Balance]] is applied | + | [[Gas Flowing Material Balance]] is applied to determine: |
+ | * [[Reservoirs]] GIIP calculation | ||
+ | * [[Reservoirs]] [[EUR]] calculation | ||
+ | * [[Well]]'s [[EUR]] and [[JD]] | ||
+ | |||
+ | [[Gas Flowing Material Balance]] uses readily available [[Well]] flowing data: production rate and tubing head pressure. | ||
+ | |||
+ | The interpretation technique is fitting the data points with the straight lines to calculate GIIP and [[JD]]. | ||
+ | |||
+ | [[File:FMB.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]] | ||
+ | |||
+ | <center>[[Gas Flowing Material Balance]] in the [https://ep.pengtools.com/matbal/flowing-material-balance/gas E&P Portal]</center> | ||
== Math & Physics == | == Math & Physics == | ||
+ | |||
+ | Combining the gas pseudo state flow equation and the [[Gas Material Balance]] equation to get [[Gas Flowing Material Balance]] equation: | ||
+ | |||
+ | :<math> P_{\bar{P}}= P_{P_{wf}} + q_g b_{pss}</math> <ref name=Mattar2005/> | ||
+ | |||
+ | where | ||
+ | |||
+ | :<math> b_{pss} = \frac{1422 \times 10^3\ T_R}{kh\ J_D}</math> | ||
+ | |||
+ | Material balance pseudo-time: | ||
+ | |||
+ | :<math> t_{ca} = \frac{\mu_{gi} c_{gi}}{q_g}\int\limits_{0}^{t}\frac{q_g}{\bar{\mu_g} \bar{c_g}}dt</math> | ||
+ | |||
+ | ==Discussion== | ||
+ | |||
+ | [[Gas Flowing Material Balance]] can be applied to: | ||
+ | *single well | ||
+ | *multiple wells producing from the same [[Reservoirs| Reservoir]]. | ||
+ | |||
+ | The X axis on the [[Gas Flowing Material Balance]] Plot can be selected as: | ||
+ | *[[Well]] cumulative | ||
+ | *[[Reservoirs| Reservoir]] cumulative | ||
+ | |||
+ | '''Example 1. Multiple wells producing from the same Reservoir. X axis - Wells cumulative''' | ||
+ | [[File:FMBex1.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]] | ||
+ | '''Example 2. Multiple wells producing from the same Reservoir. X axis - Reservoir cumulative''' | ||
+ | [[File:FMBex2.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]] | ||
+ | '''Example 3. Shifted Model Start (to account for gas injection)''' | ||
+ | [[File:FMBex3.png|link=https://ep.pengtools.com/matbal/flowing-material-balance/gas]] | ||
+ | |||
+ | ==Workflow== | ||
+ | # Upload the data required | ||
+ | # Open the [[Gas Flowing Material Balance]] tool [https://ep.pengtools.com/matbal/flowing-material-balance/gas here] | ||
+ | # Calculate the red <math> \frac{P}{z}</math> line: | ||
+ | ## Given the GIIP | ||
+ | ## Calculate the <math> \frac{P}{z}=\frac{P_i}{z_i} \left (1- \frac{G_p}{GIIP}\right )</math> | ||
+ | # Calculate the orange <math> \frac{\bar{P}}{z}</math> curve: | ||
+ | ## Given the flowing wellhead pressures, calculate the flowing bottomhole pressures, <math>P_{wf}</math> | ||
+ | ## Convert the flowing pressures to pseudopressures, <math>P_{P_{wf}}</math> | ||
+ | ## Given the [[JD]], calculate the <math> b_{pss}</math> | ||
+ | ## Calculate the pseudopressure, <math> P_{\bar{P}}</math> | ||
+ | ## Convert the pseudopressure to pressure, <math> \bar{P}</math> | ||
+ | ## Calculate the <math> \frac{\bar{P}}{z}</math> | ||
+ | # Calculate the gray [[JD]] curve: | ||
+ | ## Calculate the gas productivity index, <math>J=\frac{q_g}{P_{\bar{P}}-P_{P_{wf}}}</math> | ||
+ | ## Calculate the [[JD]], <math>J_D=\frac{1422 \times 10^3\ T_R}{kh} J</math> | ||
+ | # Change the red <math> \frac{P}{z}</math> line to match the orange <math> \frac{\bar{P}}{z}</math> curve | ||
+ | ## Change the GIIP | ||
+ | ## Change the intitial <math> \frac{P}{z}</math> | ||
+ | # Change the flat [[JD]] gray line to match the changing [[JD]] gray line | ||
+ | # Save the [[Gas Flowing Material Balance| FMB]] model | ||
+ | # Move to the next well | ||
+ | ===Extra Plot to find b<sub>pss</sub>=== | ||
+ | #Calculate the initial pseudopressure, <math>P_{Pi}</math> | ||
+ | #Calculate the material balance pseudo-time, <math>t_{ca}</math> | ||
+ | #Plot <math>\frac{P_{P_i}-P_{P_{wf}}}{q_g}</math> versus <math>t_{ca}</math> | ||
+ | #The intercept with the Y axis gives <math>b_{pss}</math> and <math>J_D</math> | ||
+ | |||
+ | == Data required == | ||
+ | |||
+ | {{Data required for Gas Flowing Material Balance}} | ||
+ | |||
+ | == Nomenclature == | ||
+ | |||
+ | :<math> b_{pss} </math> = reservoir constant, inverse to productivity index, psia<sup>2</sup>/cP/MMscfd | ||
+ | :<math> c </math> = compressibility, psia<sup>-1</sup> | ||
+ | :<math> GIIP </math> = gas initially in place, MMscf | ||
+ | :<math> G_p </math> = cumulative gas produced, MMscf | ||
+ | :<math> J </math> = gas productivity index, MMscfd/(psia<sup>2</sup>/cP) | ||
+ | :<math> J_D </math> = dimensionless productivity index, dimensionless | ||
+ | :<math> kh</math> = permeability times thickness, md*ft | ||
+ | :<math> P </math> = pressure, psia | ||
+ | :<math> \bar{P} </math> = average reservoir pressure, psia | ||
+ | :<math> P_P </math> = pseudopressure, psia<sup>2</sup>/cP | ||
+ | :<math> q_g </math> = gas rate, MMscfd | ||
+ | :<math> t </math> = time, day | ||
+ | :<math> t_{ca} </math> = material balance pseudotime for gas, day | ||
+ | :<math> T </math> = temperature, °R | ||
+ | :<math> z </math> = gas compressibility factor, dimensionless | ||
+ | |||
+ | ===Greek symbols=== | ||
+ | |||
+ | :<math> \mu </math> = viscosity, cp | ||
+ | |||
+ | ===Subscripts=== | ||
+ | |||
+ | :g = gas<BR/> | ||
+ | :i = initial<BR/> | ||
+ | :R = °R<BR/> | ||
+ | :wf = well flowing <BR/> | ||
+ | |||
+ | == References == | ||
+ | |||
+ | <references> | ||
+ | <ref name=Mattar1998>{{cite journal | ||
+ | |last1=Mattar|first1=L. | ||
+ | |last2= McNeil |first2=R. | ||
+ | |title=The "Flowing" Gas Material Balance | ||
+ | |publisher=Petroleum Society of Canada | ||
+ | |journal=Journal of Canadian Petroleum Technology | ||
+ | |date=1998 | ||
+ | |url=https://ihsmarkit.com/pdf/flowing-gas-material-bal-paper_228615110913049832.pdf | ||
+ | }}</ref> | ||
+ | |||
+ | <ref name=Mattar2005>{{cite journal | ||
+ | |last1=Mattar|first1=L. | ||
+ | |last2= Anderson |first2=D | ||
+ | |title=Dynamic Material Balance (Oil or Gas-In-Place Without Shut-Ins) | ||
+ | |publisher=CIPC | ||
+ | |date=2005 | ||
+ | |url=https://www.ihs.com/pdf/dynamic-material-balance-paper_227867110913049832.pdf | ||
+ | }}</ref> | ||
+ | |||
+ | |||
+ | </references> | ||
[[Category:E&P Portal]] | [[Category:E&P Portal]] | ||
− | + | {{#seo: | |
− | + | |title=Gas Flowing Material Balance for GIIP calculation | |
− | + | |titlemode= replace | |
+ | |keywords=giip calculation, reservoir engineering, flowing material balance, petroleum engineering, equation | ||
+ | |description=Gas Flowing Material Balance is the advanced engineering technique applied to calculate reservoirs and wells GIIP and productivity index. | ||
+ | }} |
Latest revision as of 18:00, 3 November 2018
Contents
Brief
Gas Flowing Material Balance (Gas FMB) is the advanced engineering technique published in 1998 by Louis Mattar [1].
Gas Flowing Material Balance is applied to determine:
- Reservoirs GIIP calculation
- Reservoirs EUR calculation
- Well's EUR and JD
Gas Flowing Material Balance uses readily available Well flowing data: production rate and tubing head pressure.
The interpretation technique is fitting the data points with the straight lines to calculate GIIP and JD.
Math & Physics
Combining the gas pseudo state flow equation and the Gas Material Balance equation to get Gas Flowing Material Balance equation:
where
Material balance pseudo-time:
Discussion
Gas Flowing Material Balance can be applied to:
- single well
- multiple wells producing from the same Reservoir.
The X axis on the Gas Flowing Material Balance Plot can be selected as:
Example 1. Multiple wells producing from the same Reservoir. X axis - Wells cumulative Example 2. Multiple wells producing from the same Reservoir. X axis - Reservoir cumulative Example 3. Shifted Model Start (to account for gas injection)
Workflow
- Upload the data required
- Open the Gas Flowing Material Balance tool here
- Calculate the red line:
- Given the GIIP
- Calculate the
- Calculate the orange curve:
- Given the flowing wellhead pressures, calculate the flowing bottomhole pressures,
- Convert the flowing pressures to pseudopressures,
- Given the JD, calculate the
- Calculate the pseudopressure,
- Convert the pseudopressure to pressure,
- Calculate the
- Calculate the gray JD curve:
- Calculate the gas productivity index,
- Calculate the JD,
- Change the red line to match the orange curve
- Change the GIIP
- Change the intitial
- Change the flat JD gray line to match the changing JD gray line
- Save the FMB model
- Move to the next well
Extra Plot to find bpss
- Calculate the initial pseudopressure,
- Calculate the material balance pseudo-time,
- Plot versus
- The intercept with the Y axis gives and
Data required
- Create Field here
- Create or Upload Reservoirs here
- Input the Reservoirs GIIP and STOIIP here
- Create or Upload PVT (SG, Pi, Ti) here
- Upload Wells
- Create or Upload Wells Perforations here
- Create or Upload kh and JD here
- Upload Daily Measures
In case you need to calculate the flowing bottomhole pressure from the wellhead pressure:
- Calculate the flowing bottomhole pressures using BHP Calculator
- Export flowing bottomhole pressures to Daily Measures here
In case you want to add the static reservoir pressures on the FMB Plot:
- Create or Upload the static reservoir pressures, here
- Calculate Monthly Measures from the Daily Measures using Monthly Data Calculator
Nomenclature
- = reservoir constant, inverse to productivity index, psia2/cP/MMscfd
- = compressibility, psia-1
- = gas initially in place, MMscf
- = cumulative gas produced, MMscf
- = gas productivity index, MMscfd/(psia2/cP)
- = dimensionless productivity index, dimensionless
- = permeability times thickness, md*ft
- = pressure, psia
- = average reservoir pressure, psia
- = pseudopressure, psia2/cP
- = gas rate, MMscfd
- = time, day
- = material balance pseudotime for gas, day
- = temperature, °R
- = gas compressibility factor, dimensionless
Greek symbols
- = viscosity, cp
Subscripts
- g = gas
- i = initial
- R = °R
- wf = well flowing
References
- ↑ Mattar, L.; McNeil, R. (1998). "The "Flowing" Gas Material Balance" (PDF). Journal of Canadian Petroleum Technology. Petroleum Society of Canada.
- ↑ Mattar, L.; Anderson, D (2005). "Dynamic Material Balance (Oil or Gas-In-Place Without Shut-Ins)" (PDF). CIPC.