Difference between revisions of "Hagedorn and Brown correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Brief)
 
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
 
== Brief ==
 
== Brief ==
[[Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=HB />.
+
[[Hagedorn and Brown correlation |Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=HB />.
  
 
It doesn't distinguish between the flow regimes.
 
It doesn't distinguish between the flow regimes.
  
The heart of the [[Hagedorn and Brown]] method is a correlation for the liquid holdup H<sub>L</sub> <ref name=Economides />.
+
The heart of the [[Hagedorn and Brown correlation|Hagedorn and Brown]] method is a correlation for the liquid holdup H<sub>L</sub> <ref name=Economides />.
  
[[Hagedorn and Brown]]  is a default [[VLP]] correlation for the '''oil wells''' in the [[:Category:PqPlot|PQplot]].
+
[[Hagedorn and Brown correlation|Hagedorn and Brown]]  is the default [[VLP]] correlation for the '''oil wells''' in the [[:Category:PQplot|PQplot]].
 +
 
 +
[[File: Hagedorn and Brown.png|thumb|500px|link=https://www.pengtools.com/pqPlot?paramsToken=57e2ad9dd84d56fb56b7515b2ef312bd|Hagedorn and Brown in PQplot Vs Prosper & Kappa |right]]
  
 
== Math & Physics ==
 
== Math & Physics ==
Line 23: Line 25:
 
== Discussion  ==
 
== Discussion  ==
  
Why [[Hagedorn and Brown]]?
+
Why [[Hagedorn and Brown correlation| Hagedorn and Brown]]?
  
 
{{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}
 
{{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}
 +
 +
== Demo ==
 +
 +
[[Hagedorn and Brown]] correlation overview video:
 +
 +
[[File:Hagedorn and Brown demo.png|400px|https://www.youtube.com/watch?v=DpSv3kWPsIk | Watch on youtube]]
 +
 +
[[Media:Hagedorn and Brown ppt.pdf|Download presentation (pdf)]]
 +
 +
In this video it's shown:
 +
*What the Hagedorn and Brown correlation is
 +
*History and practical application
 +
*Math & Physics
 +
*Flow diagram to get the VLP curve
 +
*Workflow to find HL
  
 
== Flow Diagram ==
 
== Flow Diagram ==
Line 49: Line 66:
 
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>
 
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>
  
:<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
+
:<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_R}{520}\ \frac{z}{1}</math><ref name= Lyons/>
  
 
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
 
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
Line 77: Line 94:
 
2. Use the [[Griffith correlation]] to define the bubble flow regime<ref name = Economides/> and calculate H<sub>L</sub>.
 
2. Use the [[Griffith correlation]] to define the bubble flow regime<ref name = Economides/> and calculate H<sub>L</sub>.
  
3. Use watercut instead of WOR to account for the watercut = 100%.
+
3. Use [[WCUT| watercut]] instead of [[WOR]] to account for the watercut = 100%.
  
 
== Nomenclature  ==
 
== Nomenclature  ==
  
 +
:<math> A_p </math> = flow area, ft2
 
:<math> B </math> = correlation group, dimensionless
 
:<math> B </math> = correlation group, dimensionless
 
:<math> B </math> = formation factor, bbl/stb
 
:<math> B </math> = formation factor, bbl/stb
Line 87: Line 105:
 
:<math> h </math> = depth, ft
 
:<math> h </math> = depth, ft
 
:<math> H </math> = correlation group, dimensionless
 
:<math> H </math> = correlation group, dimensionless
:<math> H_L </math> = liquid holdup factor, dimensionless
+
:<math> H_L </math> = liquid holdup factor, fraction
 
:<math> f </math> = friction factor, dimensionless
 
:<math> f </math> = friction factor, dimensionless
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
 
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
 
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
:<math> N_D </math> = pipe diameter number number, dimensionless
+
:<math> N_D </math> = pipe diameter number, dimensionless
 
:<math> N_GV </math> = gas velocity number, dimensionless
 
:<math> N_GV </math> = gas velocity number, dimensionless
 
:<math> N_L </math> = liquid viscosity number, dimensionless
 
:<math> N_L </math> = liquid viscosity number, dimensionless
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> p </math> = pressure, psia
:<math> q_c </math> = conversion constant equal to 32.174, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
+
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
:<math> q_L </math> = total liquid production rate, bbl/d
+
:<math> q </math> = total liquid production rate, bbl/d
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
Line 109: Line 127:
  
 
:<math> \varepsilon </math> = absolute roughness, ft
 
:<math> \varepsilon </math> = absolute roughness, ft
:<math> \mu </math> = oil viscosity, cp
+
:<math> \mu </math> = viscosity, cp
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>2</sup>
+
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 
:<math> \psi </math> = secondary correlation factor, dimensionless
 
:<math> \psi </math> = secondary correlation factor, dimensionless
Line 117: Line 135:
 
===Subscripts===
 
===Subscripts===
  
g = gas<BR/>
+
:g = gas<BR/>
K = °K<BR/>
+
:K = °K<BR/>
L = liquid<BR/>
+
:L = liquid<BR/>
m = gas/liquid mixture<BR/>
+
:m = gas/liquid mixture<BR/>
o = oil<BR/>
+
:o = oil<BR/>
R = °R<BR/>
+
:R = °R<BR/>
SL = superficial liquid<BR/>
+
:SL = superficial liquid<BR/>
SG = superficial gas<BR/>
+
:SG = superficial gas<BR/>
w = water<BR/>
+
:w = water<BR/>
  
 
== References ==
 
== References ==
Line 136: Line 154:
 
  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits
 
  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits
 
  |journal=Journal of Petroleum Technology
 
  |journal=Journal of Petroleum Technology
 +
|number=SPE-940-PA
 
  |date=1965
 
  |date=1965
 
  |volume=17(04)
 
  |volume=17(04)
 
  |pages=475-484
 
  |pages=475-484
 +
|url=https://www.onepetro.org/journal-paper/SPE-940-PA
 +
|url-access=registration
 
}}</ref>
 
}}</ref>
  
Line 201: Line 222:
  
 
[[Category:pengtools]]
 
[[Category:pengtools]]
[[Category:pqPlot]]
+
[[Category:PQplot]]
 +
 
 +
{{#seo:
 +
|title=Hagedorn and Brown correlation
 +
|titlemode= replace
 +
|keywords=Hagedorn and Brown, correlation, equation, flow rate, fluids flow, Reynolds number, liquid hold up
 +
|description=Hagedorn and Brown correlation used to calculate reservoir inflow performance curve for nodal analysis
 +
}}

Latest revision as of 12:21, 1 November 2018

Brief

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965 [1].

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup HL [2].

Hagedorn and Brown is the default VLP correlation for the oil wells in the PQplot.

Hagedorn and Brown in PQplot Vs Prosper & Kappa

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}[1]

Discussion

Why Hagedorn and Brown?

One of the consistently best correlations ...
— Michael Economides et al[2]

Demo

Hagedorn and Brown correlation overview video:

Watch on youtube

Download presentation (pdf)

In this video it's shown:

  • What the Hagedorn and Brown correlation is
  • History and practical application
  • Math & Physics
  • Flow diagram to get the VLP curve
  • Workflow to find HL

Flow Diagram

HB Block Diagram

Workflow HL

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR[1]
 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}[5]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [5]
 \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}[5]
 \sigma_L = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}[5]
 N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}[1]
 CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 [2]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )[5]
 v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_R}{520}\ \frac{z}{1}[5]
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} [1]
 H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} [2]
 \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} [6]
 B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} [2]
 \psi = \begin{cases} 
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
2.5714 B +1.5962, & \mbox{if }B > 0.055
\end{cases} [6]
 H_L = \frac{H_L}{\psi} \times \psi[1]

Modifications

1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup HL less than the no-slip holdup [2].

2. Use the Griffith correlation to define the bubble flow regime[2] and calculate HL.

3. Use watercut instead of WOR to account for the watercut = 100%.

Nomenclature

 A_p = flow area, ft2
 B = correlation group, dimensionless
 B = formation factor, bbl/stb
 C = coefficient for liquid viscosity number, dimensionless
 D = pipe diameter, ft
 h = depth, ft
 H = correlation group, dimensionless
 H_L = liquid holdup factor, fraction
 f = friction factor, dimensionless
 GLR = gas-liquid ratio, scf/bbl
 M = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
 N_D = pipe diameter number, dimensionless
 N_GV = gas velocity number, dimensionless
 N_L = liquid viscosity number, dimensionless
 N_LV = liquid velocity number, dimensionless
 p = pressure, psia
 q_c = conversion constant equal to 32.174049, lbmft / lbfsec2
 q = total liquid production rate, bbl/d
 Re = Reynolds number, dimensionless
 R_s = solution gas-oil ratio, scf/stb
 SG = specific gravity, dimensionless
 T = temperature, °R or °K, follow the subscript
 v = velocity, ft/sec
 WOR = water-oil ratio, bbl/bbl
 z = gas compressibility factor, dimensionless

Greek symbols

 \varepsilon = absolute roughness, ft
 \mu = viscosity, cp
 \rho = density, lbm/ft3
 \bar \rho = integrated average density at flowing conditions, lbm/ft3
 \sigma = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 \psi = secondary correlation factor, dimensionless

Subscripts

g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits"Free registration required. Journal of Petroleum Technology. 17(04) (SPE-940-PA): 475–484. 
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0. 
  3. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5. 
  6. 6.0 6.1 Trina, S. (2010). An integrated horizontal and vertical flow simulation with application to wax precipitation (Master of Engineering Thesis). Canada: Memorial University of Newfoundland.