Difference between revisions of "Gray correlation"
 (→Workflow)  | 
				|||
| (131 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
== Brief ==  | == Brief ==  | ||
| − | + | [[Gray correlation|Gray]] is an empirical two-phase flow correlation published in '''1974''' <ref name= Gray />.  | |
| + | |||
| + | [[Gray correlation|Gray]] is the default [[VLP]] correlation for the '''gas wells''' in the [[PQplot]].  | ||
| + | |||
| + | [[File: GRAY.png|thumb|500px|link=https://www.pengtools.com/pqPlot?paramsToken=d14638acea57a4523b4553153a5dcb5a|Gray in PQplot Vs Prosper & Kappa |right]]  | ||
== Math & Physics ==  | == Math & Physics ==  | ||
Following the law of conservation of energy the basic steady state flow equation is:  | Following the law of conservation of energy the basic steady state flow equation is:  | ||
| − | :<math> 144 \frac{\Delta p}{\Delta h} =   | + | :<math> 144 \frac{\Delta p}{\Delta h} =  \bar \rho_m + \rho_m \frac{f v_m^2 }{2 g_c D} + \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math>  | 
where  | where  | ||
| − | :<math> \rho_m </math> =   | + | :<math> \bar \rho_m = \rho_L (1-H_g) + \rho_g H_g</math>,  slip mixture density <ref name= Gray />.  | 
| + | |||
| + | :<math> \rho_m = \rho_L C_L + \rho_g (1-C_L) </math>,  no-slip mixture density <ref name= Gray />.  | ||
Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | ||
| − | :<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math><ref name = Moody1944/>  | + | :<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon'} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math><ref name = Moody1944/>  | 
| + | |||
| + | The pseudo wall roughness:  | ||
| + | :<math> \varepsilon' = \begin{cases}   | ||
| + | \frac{28.5}{453.592} \frac{\sigma_L}{\rho_m v_m^2},  &\mbox{if } R \geqslant 0.007 \\  | ||
| + | \varepsilon + R \frac{\varepsilon'-\varepsilon}{0.007}, & \mbox{if } R < 0.007   | ||
| + | \end{cases} </math>, with the limit <math> \varepsilon' \geqslant 2.77 \times 10^{-5}</math><ref name= Gray/>  | ||
Reynolds two phase number:  | Reynolds two phase number:  | ||
| − | :<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{  | + | :<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{C_L} \mu_g^{(1-C_L)}}</math><ref name= HB/>  | 
== Discussion  ==  | == Discussion  ==  | ||
| − | == Workflow  ==  | + | Why [[Gray correlation|Gray]] correlation?  | 
| + | |||
| + | {{Quote| text = The Gray correlation was found to be the best of several initially tested ... | source = Nitesh Kumar l<ref name= Kumar />}}  | ||
| + | |||
| + | == Workflow  H<sub>g</sub> & C<sub>L</sub>==    | ||
| − | + | :<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math><ref name="HB" />  | |
| − | :<math> N_V = 453.592\ \frac{\  | + | :<math> \rho_L= 62.4\ SG_o \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}</math>  | 
| + | |||
| + | :<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/>  | ||
| + | |||
| + | :<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>  | ||
| + | |||
| + | :<math> v_{SG} = \frac{q_g \times 10^6}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math>  | ||
| + | |||
| + | :<math> C_L = \frac{v_{SL}}{v_{SG}+v_{SL}}</math>  | ||
| + | |||
| + | :<math> v_m = v_{SL} +  v_{SG} </math>  | ||
| + | |||
| + | :<math> \rho_m = \rho_L C_L + \rho_g (1-C_L) </math>  | ||
| + | |||
| + | :<math> \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}</math><ref name= Lyons/>  | ||
| + | |||
| + | :<math> \sigma_L = \frac{\sigma_o\ q_o + 0.617\ \sigma_w\ q_w}{q_o + 0.617\ q_w}</math> <ref name= Gray/>  | ||
| + | |||
| + | :<math> N_V = 453.592\ \frac{{\rho_m}^2 {v_m}^4}{g_c \sigma_L (\rho_L - \rho_g)} </math><ref name= Gray/>  | ||
| + | |||
| + | :<math> N_D = 453.592\ \frac{g_c (\rho_L - \rho_g) D^2}{\sigma_L } </math><ref name= Gray/>  | ||
| + | |||
| + | :<math> R = \frac{v_{SL}}{v_{SG}} </math><ref name= Gray/>  | ||
| + | |||
| + | :<math> B = 0.0814 \left ( 1 - 0.554\ \ln \left (1 + \frac{730 R}{R+1} \right )  \right ) </math><ref name= Gray/>  | ||
| + | |||
| + | :<math> A = -2.2314 \left ( N_V \left (1 + \frac{205}{N_D} \right )  \right )^B </math><ref name= Gray/>  | ||
| + | |||
| + | :<math> H_g = \frac{1-e^A}{R+1}</math><ref name= Gray/>  | ||
| + | |||
| + | == Modifications  ==  | ||
| + | |||
| + | 1.  Use [[Fanning correlation]] for the dry gas ([[WGR]]=0 and [[OGR]]=0 case).  | ||
| + | |||
| + | 2. Use [[WCUT| watercut]] instead of [[WOR]] to account for the [[OGR]]=0 case.  | ||
| + | |||
| + | 3. If the relative roughness: <math> \frac{\varepsilon'}{D} > 0.05 </math> use 0.05 in the Moody Diagram <ref name = Moody1944/>.  | ||
| + | |||
| + | 4. If H<sub>L</sub> can't be calculated then H<sub>L</sub> = C<sub>L</sub>.  | ||
== Nomenclature  ==  | == Nomenclature  ==  | ||
| + | |||
| + | :<math> A </math> = correlation group, dimensionless  | ||
| + | :<math> A_p </math> = flow area, ft2  | ||
| + | :<math> B </math> = correlation group, dimensionless  | ||
| + | :<math> B </math> = formation factor, bbl/stb  | ||
| + | :<math> C </math> = no-slip holdup factor, dimensionless  | ||
| + | :<math> D </math> = pipe diameter, ft  | ||
| + | :<math> h </math> = depth, ft  | ||
| + | :<math> H </math> = holdup factor, dimensionless  | ||
| + | :<math> f </math> = friction factor, dimensionless  | ||
| + | :<math> GLR </math> = gas-liquid ratio, scf/bbl  | ||
| + | :<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl  | ||
| + | :<math> N_D </math> = pipe diameter number, dimensionless  | ||
| + | :<math> N_V </math> = velocity number, dimensionless  | ||
| + | :<math> p </math> = pressure, psia  | ||
| + | :<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>  | ||
| + | :<math> q </math> = production rate, bbl/d  | ||
| + | :<math> R </math> = superficial liquid to gas ratio, dimensionless  | ||
| + | :<math> Re </math> = Reynolds number, dimensionless  | ||
| + | :<math> SG </math> = specific gravity, dimensionless  | ||
| + | :<math> T </math> = temperature, °R or °K, follow the subscript  | ||
| + | :<math> v </math> = velocity, ft/sec  | ||
| + | :<math> WOR </math> = water-oil ratio, bbl/bbl  | ||
| + | :<math> z </math> = gas compressibility factor, dimensionless  | ||
| + | |||
| + | ===Greek symbols===  | ||
| + | |||
| + | :<math> \varepsilon </math> = absolute roughness, ft  | ||
| + | :<math> \varepsilon' </math> = pseudo wall roughness, ft  | ||
| + | :<math> \mu </math> = viscosity, cp  | ||
| + | :<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>  | ||
| + | :<math> \bar \rho </math> = slip density, lb<sub>m</sub>/ft<sup>2</sup>  | ||
| + | :<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm  | ||
| + | |||
| + | ===Subscripts===  | ||
| + | |||
| + | g = gas<BR/>  | ||
| + | K = °K<BR/>  | ||
| + | L = liquid<BR/>  | ||
| + | m = gas/liquid mixture<BR/>  | ||
| + | o = oil<BR/>  | ||
| + | R = °R<BR/>  | ||
| + | SL = superficial liquid<BR/>  | ||
| + | SG = superficial gas<BR/>  | ||
| + | w = water<BR/>  | ||
== References ==  | == References ==  | ||
| Line 62: | Line 161: | ||
  |url-access=subscription    |   |url-access=subscription    | ||
}} </ref>  | }} </ref>  | ||
| + | |||
| + | <ref name=HB>{{cite journal  | ||
| + |  |last1=Hagedorn|first1=A. R.  | ||
| + |  |last2= Brown |first2=K. E.  | ||
| + |  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits  | ||
| + |  |journal=Journal of Petroleum Technology  | ||
| + |  |date=1965  | ||
| + |  |volume=17(04)  | ||
| + |  |pages=475-484  | ||
| + | }}</ref>  | ||
| + | |||
| + | <ref name= Lyons>{{cite book  | ||
| + |  |last1= Lyons |first1=W.C.  | ||
| + |  |title=Standard handbook of petroleum and natural gas engineering  | ||
| + |  |date= 1996  | ||
| + |  |volume=2  | ||
| + |  |publisher=Gulf Professional Publishing  | ||
| + |  |place=Houston, TX  | ||
| + |  |isbn=0-88415-643-5  | ||
| + | }}</ref>  | ||
| + | |||
| + | <ref name=Kumar>{{cite journal  | ||
| + |  |first1=N. |last1=Kumar   | ||
| + |  |first2=J. F. |last2=Lea   | ||
| + |  |title=Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading  | ||
| + |  |number=SPE-92049-MS  | ||
| + |  |date=January 1, 2005  | ||
| + |  |url=https://www.onepetro.org/conference-paper/SPE-92049-MS  | ||
| + |  |url-access=registration  | ||
| + | }}</ref>  | ||
</references>  | </references>  | ||
[[Category:pengtools]]  | [[Category:pengtools]]  | ||
| − | [[Category:  | + | [[Category:PQplot]]  | 
| + | |||
| + | {{#seo:  | ||
| + | |title=Gray correlation  | ||
| + | |titlemode= replace  | ||
| + | |keywords=Gray correlation  | ||
| + | |description=Gray correlation is an empirical two-phase flow correlation published in 1974.  | ||
| + | }}  | ||
Latest revision as of 09:10, 6 December 2018
Contents
Brief
Gray is an empirical two-phase flow correlation published in 1974 [1].
Gray is the default VLP correlation for the gas wells in the PQplot.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
,  slip mixture density [1].
,  no-slip mixture density [1].
Colebrook–White [2] equation for the Darcy's friction factor:
The pseudo wall roughness:
, with the limit 
[1]
Reynolds two phase number:
Discussion
Why Gray correlation?
The Gray correlation was found to be the best of several initially tested ...— Nitesh Kumar l[5]
Workflow Hg & CL
Modifications
1. Use Fanning correlation for the dry gas (WGR=0 and OGR=0 case).
2. Use watercut instead of WOR to account for the OGR=0 case.
3. If the relative roughness: 
 use 0.05 in the Moody Diagram [3].
4. If HL can't be calculated then HL = CL.
Nomenclature
 = correlation group, dimensionless
 = flow area, ft2
 = correlation group, dimensionless
 = formation factor, bbl/stb
 = no-slip holdup factor, dimensionless
 = pipe diameter, ft
 = depth, ft
 = holdup factor, dimensionless
 = friction factor, dimensionless
 = gas-liquid ratio, scf/bbl
 = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
 = pipe diameter number, dimensionless
 = velocity number, dimensionless
 = pressure, psia
 = conversion constant equal to 32.174049, lbmft / lbfsec2
 = production rate, bbl/d
 = superficial liquid to gas ratio, dimensionless
 = Reynolds number, dimensionless
 = specific gravity, dimensionless
 = temperature, °R or °K, follow the subscript
 = velocity, ft/sec
 = water-oil ratio, bbl/bbl
 = gas compressibility factor, dimensionless
Greek symbols
 = absolute roughness, ft
 = pseudo wall roughness, ft
 = viscosity, cp
 = density, lbm/ft3
 = slip density, lbm/ft2
 = surface tension of liquid-air interface, dynes/cm
Subscripts
g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.
 - ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"
. Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
 - ↑ 3.0 3.1 Moody, L. F. (1944). "Friction factors for pipe flow"
. Transactions of the ASME. 66 (8): 671–684. 
 - ↑ 4.0 4.1 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits". Journal of Petroleum Technology. 17(04): 475–484.
 - ↑ Kumar, N.; Lea, J. F. (January 1, 2005). "Improvements for Flow Correlations for Gas Wells Experiencing Liquid Loading"
 (SPE-92049-MS).
 - ↑ 6.0 6.1 6.2 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.
 











 





