Difference between revisions of "Hagedorn and Brown correlation"

From wiki.pengtools.com
Jump to: navigation, search
 
(52 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
 
== Brief ==
 
== Brief ==
[[Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=HB />.
+
[[Hagedorn and Brown correlation |Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=HB />.
  
 
It doesn't distinguish between the flow regimes.
 
It doesn't distinguish between the flow regimes.
  
The heart of the [[Hagedorn and Brown]] method is a correlation for the liquid holdup H<sub>L</sub> <ref name=Economides />.
+
The heart of the [[Hagedorn and Brown correlation|Hagedorn and Brown]] method is a correlation for the liquid holdup H<sub>L</sub> <ref name=Economides />.
 +
 
 +
[[Hagedorn and Brown correlation|Hagedorn and Brown]]  is the default [[VLP]] correlation for the '''oil wells''' in the [[:Category:PQplot|PQplot]].
 +
 
 +
[[File: Hagedorn and Brown.png|thumb|500px|link=https://www.pengtools.com/pqPlot?paramsToken=57e2ad9dd84d56fb56b7515b2ef312bd|Hagedorn and Brown in PQplot Vs Prosper & Kappa |right]]
  
 
== Math & Physics ==
 
== Math & Physics ==
Line 21: Line 25:
 
== Discussion  ==
 
== Discussion  ==
  
Why [[Hagedorn and Brown]]?
+
Why [[Hagedorn and Brown correlation| Hagedorn and Brown]]?
  
 
{{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}
 
{{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}
  
{{Quote| text = ... still one of the most highly regarded models, and its able to predict pressure, flowrate and liquid holdup easily. | source = Sameena Trina <ref name=Trina />}}
+
== Demo ==
 +
 
 +
[[Hagedorn and Brown]] correlation overview video:
 +
 
 +
[[File:Hagedorn and Brown demo.png|400px|https://www.youtube.com/watch?v=DpSv3kWPsIk | Watch on youtube]]
 +
 
 +
[[Media:Hagedorn and Brown ppt.pdf|Download presentation (pdf)]]
 +
 
 +
In this video it's shown:
 +
*What the Hagedorn and Brown correlation is
 +
*History and practical application
 +
*Math & Physics
 +
*Flow diagram to get the VLP curve
 +
*Workflow to find HL
  
 
== Flow Diagram ==
 
== Flow Diagram ==
Line 31: Line 48:
 
[[File: HB Block Diagram.png|400px|HB Block Diagram]]
 
[[File: HB Block Diagram.png|400px|HB Block Diagram]]
  
== Workflow  ==
+
== Workflow  H<sub>L</sub> ==
 
 
To find H<sub>L</sub> calculate:
 
  
 
:<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math><ref name="HB" />
 
:<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math><ref name="HB" />
Line 51: Line 66:
 
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>
 
:<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>
  
:<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
+
:<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_R}{520}\ \frac{z}{1}</math><ref name= Lyons/>
  
 
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
 
:<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>
Line 66: Line 81:
  
 
:<math> \psi = \begin{cases}  
 
:<math> \psi = \begin{cases}  
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B <= 0.025 \\
+
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\
 
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
 
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
 
2.5714 B +1.5962, & \mbox{if }B > 0.055
 
2.5714 B +1.5962, & \mbox{if }B > 0.055
Line 77: Line 92:
 
1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup H<sub>L</sub> less than the no-slip holdup <ref name = Economides/>.
 
1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup H<sub>L</sub> less than the no-slip holdup <ref name = Economides/>.
  
2. Use of the [[Griffith correlation]] to calculate H<sub>L</sub> for the bubble flow regime <ref name = Economides/>.
+
2. Use the [[Griffith correlation]] to define the bubble flow regime<ref name = Economides/> and calculate H<sub>L</sub>.
  
3. Use watercut instead of WOR to account for the watercut = 100%.
+
3. Use [[WCUT| watercut]] instead of [[WOR]] to account for the watercut = 100%.
  
 
== Nomenclature  ==
 
== Nomenclature  ==
  
 +
:<math> A_p </math> = flow area, ft2
 
:<math> B </math> = correlation group, dimensionless
 
:<math> B </math> = correlation group, dimensionless
 
:<math> B </math> = formation factor, bbl/stb
 
:<math> B </math> = formation factor, bbl/stb
Line 89: Line 105:
 
:<math> h </math> = depth, ft
 
:<math> h </math> = depth, ft
 
:<math> H </math> = correlation group, dimensionless
 
:<math> H </math> = correlation group, dimensionless
:<math> H_L </math> = liquid holdup factor, dimensionless
+
:<math> H_L </math> = liquid holdup factor, fraction
 
:<math> f </math> = friction factor, dimensionless
 
:<math> f </math> = friction factor, dimensionless
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
 
:<math> GLR </math> = gas-liquid ratio, scf/bbl
 
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
 
:<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl
:<math> N_D </math> = pipe diameter number number, dimensionless
+
:<math> N_D </math> = pipe diameter number, dimensionless
 
:<math> N_GV </math> = gas velocity number, dimensionless
 
:<math> N_GV </math> = gas velocity number, dimensionless
 
:<math> N_L </math> = liquid viscosity number, dimensionless
 
:<math> N_L </math> = liquid viscosity number, dimensionless
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> N_LV </math> = liquid velocity number, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> p </math> = pressure, psia
:<math> q_c </math> = conversion constant equal to 32.174, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
+
:<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>
:<math> q_L </math> = total liquid production rate, bbl/d
+
:<math> q </math> = total liquid production rate, bbl/d
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> Re </math> = Reynolds number, dimensionless
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
 
:<math> R_s </math> = solution gas-oil ratio, scf/stb
Line 111: Line 127:
  
 
:<math> \varepsilon </math> = absolute roughness, ft
 
:<math> \varepsilon </math> = absolute roughness, ft
:<math> \mu </math> = oil viscosity, cp
+
:<math> \mu </math> = viscosity, cp
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>2</sup>
+
:<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm
+
:<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 
:<math> \psi </math> = secondary correlation factor, dimensionless
 
:<math> \psi </math> = secondary correlation factor, dimensionless
  
 
===Subscripts===
 
===Subscripts===
  
g = gas<BR/>
+
:g = gas<BR/>
K = °K<BR/>
+
:K = °K<BR/>
L = liquid<BR/>
+
:L = liquid<BR/>
o = oil<BR/>
+
:m = gas/liquid mixture<BR/>
R = °R<BR/>
+
:o = oil<BR/>
SL = superficial liquid<BR/>
+
:R = °R<BR/>
SG = superficial gas<BR/>
+
:SL = superficial liquid<BR/>
w = water<BR/>
+
:SG = superficial gas<BR/>
 +
:w = water<BR/>
  
 
== References ==
 
== References ==
Line 137: Line 154:
 
  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits
 
  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits
 
  |journal=Journal of Petroleum Technology
 
  |journal=Journal of Petroleum Technology
 +
|number=SPE-940-PA
 
  |date=1965
 
  |date=1965
 
  |volume=17(04)
 
  |volume=17(04)
 
  |pages=475-484
 
  |pages=475-484
 +
|url=https://www.onepetro.org/journal-paper/SPE-940-PA
 +
|url-access=registration
 
}}</ref>
 
}}</ref>
  
Line 202: Line 222:
  
 
[[Category:pengtools]]
 
[[Category:pengtools]]
[[Category:pqPlot]]
+
[[Category:PQplot]]
 +
 
 +
{{#seo:
 +
|title=Hagedorn and Brown correlation
 +
|titlemode= replace
 +
|keywords=Hagedorn and Brown, correlation, equation, flow rate, fluids flow, Reynolds number, liquid hold up
 +
|description=Hagedorn and Brown correlation used to calculate reservoir inflow performance curve for nodal analysis
 +
}}

Latest revision as of 12:21, 1 November 2018

Brief

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965 [1].

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup HL [2].

Hagedorn and Brown is the default VLP correlation for the oil wells in the PQplot.

Hagedorn and Brown in PQplot Vs Prosper & Kappa

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}[1]

Discussion

Why Hagedorn and Brown?

One of the consistently best correlations ...
— Michael Economides et al[2]

Demo

Hagedorn and Brown correlation overview video:

Watch on youtube

Download presentation (pdf)

In this video it's shown:

  • What the Hagedorn and Brown correlation is
  • History and practical application
  • Math & Physics
  • Flow diagram to get the VLP curve
  • Workflow to find HL

Flow Diagram

HB Block Diagram

Workflow HL

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR[1]
 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}[5]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [5]
 \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}[5]
 \sigma_L = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}[5]
 N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}[1]
 CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 [2]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )[5]
 v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_R}{520}\ \frac{z}{1}[5]
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [1]
 N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} [1]
 H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} [2]
 \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} [6]
 B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} [2]
 \psi = \begin{cases} 
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
2.5714 B +1.5962, & \mbox{if }B > 0.055
\end{cases} [6]
 H_L = \frac{H_L}{\psi} \times \psi[1]

Modifications

1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup HL less than the no-slip holdup [2].

2. Use the Griffith correlation to define the bubble flow regime[2] and calculate HL.

3. Use watercut instead of WOR to account for the watercut = 100%.

Nomenclature

 A_p = flow area, ft2
 B = correlation group, dimensionless
 B = formation factor, bbl/stb
 C = coefficient for liquid viscosity number, dimensionless
 D = pipe diameter, ft
 h = depth, ft
 H = correlation group, dimensionless
 H_L = liquid holdup factor, fraction
 f = friction factor, dimensionless
 GLR = gas-liquid ratio, scf/bbl
 M = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
 N_D = pipe diameter number, dimensionless
 N_GV = gas velocity number, dimensionless
 N_L = liquid viscosity number, dimensionless
 N_LV = liquid velocity number, dimensionless
 p = pressure, psia
 q_c = conversion constant equal to 32.174049, lbmft / lbfsec2
 q = total liquid production rate, bbl/d
 Re = Reynolds number, dimensionless
 R_s = solution gas-oil ratio, scf/stb
 SG = specific gravity, dimensionless
 T = temperature, °R or °K, follow the subscript
 v = velocity, ft/sec
 WOR = water-oil ratio, bbl/bbl
 z = gas compressibility factor, dimensionless

Greek symbols

 \varepsilon = absolute roughness, ft
 \mu = viscosity, cp
 \rho = density, lbm/ft3
 \bar \rho = integrated average density at flowing conditions, lbm/ft3
 \sigma = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 \psi = secondary correlation factor, dimensionless

Subscripts

g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water

References

  1. Jump up to: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits"Free registration required. Journal of Petroleum Technology. 17(04) (SPE-940-PA): 475–484. 
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0. 
  3. Jump up Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Jump up Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. Jump up to: 5.0 5.1 5.2 5.3 5.4 5.5 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5. 
  6. Jump up to: 6.0 6.1 Trina, S. (2010). An integrated horizontal and vertical flow simulation with application to wax precipitation (Master of Engineering Thesis). Canada: Memorial University of Newfoundland.