Difference between revisions of "Hagedorn and Brown correlation"
 (→Math & Physics)  | 
				|||
| (151 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
__TOC__  | __TOC__  | ||
== Brief ==  | == Brief ==  | ||
| − | [[Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=  | + | [[Hagedorn and Brown correlation |Hagedorn and Brown]] is an empirical two-phase flow correlation published in '''1965'''  <ref name=HB />.  | 
It doesn't distinguish between the flow regimes.  | It doesn't distinguish between the flow regimes.  | ||
| − | The heart of the [[Hagedorn and Brown]] method is a correlation for the liquid holdup <  | + | The heart of the [[Hagedorn and Brown correlation|Hagedorn and Brown]] method is a correlation for the liquid holdup H<sub>L</sub> <ref name=Economides />.  | 
| + | |||
| + | [[Hagedorn and Brown correlation|Hagedorn and Brown]]  is the default [[VLP]] correlation for the '''oil wells''' in the [[:Category:PQplot|PQplot]].  | ||
| + | |||
| + | [[File: Hagedorn and Brown.png|thumb|500px|link=https://www.pengtools.com/pqPlot?paramsToken=57e2ad9dd84d56fb56b7515b2ef312bd|Hagedorn and Brown in PQplot Vs Prosper & Kappa |right]]  | ||
== Math & Physics ==  | == Math & Physics ==  | ||
| − | Following the law of conservation of energy the basic steady state flow equation is   | + | Following the law of conservation of energy the basic steady state flow equation is:  | 
| − | :<math> 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math>  | + | :<math> 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math><ref name="HB" />  | 
where  | where  | ||
| − | :<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math>  | + | :<math> \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)</math><ref name="HB" />  | 
| − | Colebrook–White equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | + | Colebrook–White <ref name=Colebrook/> equation for the [http://en.wikipedia.org/wiki/Darcy_friction_factor_formulae Darcy's friction factor]:  | 
| − | :<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math>  | + | :<math> \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)</math><ref name = Moody1944/>  | 
| − | Reynolds two phase number   | + | Reynolds two phase number:  | 
| − | :<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}</math>  | + | :<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}</math><ref name="HB" />  | 
== Discussion  ==  | == Discussion  ==  | ||
| + | |||
| + | Why [[Hagedorn and Brown correlation| Hagedorn and Brown]]?  | ||
| + | |||
| + | {{Quote| text = One of the consistently best correlations ... | source = Michael Economides et al<ref name=Economides />}}  | ||
| + | |||
| + | == Demo ==  | ||
| + | |||
| + | [[Hagedorn and Brown]] correlation overview video:  | ||
| + | |||
| + | [[File:Hagedorn and Brown demo.png|400px|https://www.youtube.com/watch?v=DpSv3kWPsIk | Watch on youtube]]  | ||
| + | |||
| + | [[Media:Hagedorn and Brown ppt.pdf|Download presentation (pdf)]]  | ||
| + | |||
| + | In this video it's shown:  | ||
| + | *What the Hagedorn and Brown correlation is  | ||
| + | *History and practical application  | ||
| + | *Math & Physics  | ||
| + | *Flow diagram to get the VLP curve   | ||
| + | *Workflow to find HL  | ||
== Flow Diagram ==  | == Flow Diagram ==  | ||
| Line 25: | Line 48: | ||
[[File: HB Block Diagram.png|400px|HB Block Diagram]]  | [[File: HB Block Diagram.png|400px|HB Block Diagram]]  | ||
| − | == Workflow  ==  | + | == Workflow  H<sub>L</sub> ==  | 
| − | + | :<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math><ref name="HB" />  | |
| − | :<math>   | + | :<math> \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}</math><ref name= Lyons/>  | 
| − | :<math> \  | + | :<math> \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} </math><ref name= Lyons/>  | 
| − | :<math> \  | + | :<math> \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}</math><ref name= Lyons/>  | 
| − | :<math> \  | + | :<math> \sigma_L = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}</math><ref name= Lyons/>  | 
| − | :<math> \  | + | :<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math><ref name= HB/>  | 
| − | :<math>   | + | :<math> CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 </math><ref name= Economides/>  | 
| − | :<math>   | + | :<math> v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o \frac{1}{1+WOR} + B_w \frac{WOR}{1+WOR} \right )</math><ref name= Lyons/>  | 
| − | :<math> v_{  | + | :<math> v_{SG} = \frac{q_L \left ( GLR-R_s \left( \frac{1}{1+WOR}\right) \right )}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_R}{520}\ \frac{z}{1}</math><ref name= Lyons/>  | 
| − | :<math>   | + | :<math> N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>  | 
| − | :<math> N_{  | + | :<math> N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>  | 
| − | :<math> N_{  | + | :<math> N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} </math><ref name= HB/>  | 
| − | :<math> N_{  | + | :<math> H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} </math><ref name= Economides/>  | 
| − | :<math>   | + | :<math> \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} </math><ref name= Trina/>  | 
| − | + | :<math> B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} </math><ref name= Economides/>  | |
| − | |||
| − | :<math> B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} </math>  | ||
:<math> \psi = \begin{cases}    | :<math> \psi = \begin{cases}    | ||
| − | 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B   | + | 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\  | 
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\  | -533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\  | ||
2.5714 B +1.5962, & \mbox{if }B > 0.055  | 2.5714 B +1.5962, & \mbox{if }B > 0.055  | ||
| − | \end{cases} </math>  | + | \end{cases} </math><ref name= Trina/>  | 
| − | :<math> H_L = \frac{H_L}{\psi} \times \psi</math>  | + | :<math> H_L = \frac{H_L}{\psi} \times \psi</math><ref name= HB/>  | 
| − | ==   | + | == Modifications  ==  | 
| − | =  | + | 1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup H<sub>L</sub> less than the no-slip holdup <ref name = Economides/>.  | 
| − | + | 2. Use the [[Griffith correlation]] to define the bubble flow regime<ref name = Economides/> and calculate H<sub>L</sub>.  | |
| − | [  | + | 3. Use [[WCUT| watercut]] instead of [[WOR]] to account for the watercut = 100%.  | 
| − | + | == Nomenclature  ==  | |
| − | + | :<math> A_p </math> = flow area, ft2  | |
| + | :<math> B </math> = correlation group, dimensionless  | ||
| + | :<math> B </math> = formation factor, bbl/stb  | ||
| + | :<math> C </math> = coefficient for liquid viscosity number, dimensionless  | ||
| + | :<math> D </math> = pipe diameter, ft  | ||
| + | :<math> h </math> = depth, ft  | ||
| + | :<math> H </math> = correlation group, dimensionless  | ||
| + | :<math> H_L </math> = liquid holdup factor, fraction  | ||
| + | :<math> f </math> = friction factor, dimensionless  | ||
| + | :<math> GLR </math> = gas-liquid ratio, scf/bbl  | ||
| + | :<math> M </math> = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lb<sub>m</sub>/bbl  | ||
| + | :<math> N_D </math> = pipe diameter number, dimensionless  | ||
| + | :<math> N_GV </math> = gas velocity number, dimensionless  | ||
| + | :<math> N_L </math> = liquid viscosity number, dimensionless  | ||
| + | :<math> N_LV </math> = liquid velocity number, dimensionless  | ||
| + | :<math> p </math> = pressure, psia  | ||
| + | :<math> q_c </math> = conversion constant equal to 32.174049, lb<sub>m</sub>ft / lb<sub>f</sub>sec<sup>2</sup>  | ||
| + | :<math> q </math> = total liquid production rate, bbl/d  | ||
| + | :<math> Re </math> = Reynolds number, dimensionless  | ||
| + | :<math> R_s </math> = solution gas-oil ratio, scf/stb  | ||
| + | :<math> SG </math> = specific gravity, dimensionless  | ||
| + | :<math> T </math> = temperature, °R or °K, follow the subscript  | ||
| + | :<math> v </math> = velocity, ft/sec  | ||
| + | :<math> WOR </math> = water-oil ratio, bbl/bbl  | ||
| + | :<math> z </math> = gas compressibility factor, dimensionless  | ||
| + | ===Greek symbols===  | ||
| − | + | :<math> \varepsilon </math> = absolute roughness, ft  | |
| + | :<math> \mu </math> = viscosity, cp  | ||
| + | :<math> \rho </math> = density, lb<sub>m</sub>/ft<sup>3</sup>  | ||
| + | :<math> \bar \rho </math> = integrated average density at flowing conditions, lb<sub>m</sub>/ft<sup>3</sup>  | ||
| + | :<math> \sigma </math> = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)  | ||
| + | :<math> \psi </math> = secondary correlation factor, dimensionless  | ||
| − | + | ===Subscripts===  | |
| − | + | :g = gas<BR/>  | |
| + | :K = °K<BR/>  | ||
| + | :L = liquid<BR/>  | ||
| + | :m = gas/liquid mixture<BR/>  | ||
| + | :o = oil<BR/>  | ||
| + | :R = °R<BR/>  | ||
| + | :SL = superficial liquid<BR/>  | ||
| + | :SG = superficial gas<BR/>  | ||
| + | :w = water<BR/>  | ||
| − | + | == References ==  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
<references>  | <references>  | ||
| Line 101: | Line 154: | ||
  |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits  |   |title=Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits  | ||
  |journal=Journal of Petroleum Technology  |   |journal=Journal of Petroleum Technology  | ||
| + |  |number=SPE-940-PA  | ||
  |date=1965  |   |date=1965  | ||
  |volume=17(04)  |   |volume=17(04)  | ||
  |pages=475-484  |   |pages=475-484  | ||
| + |  |url=https://www.onepetro.org/journal-paper/SPE-940-PA  | ||
| + |  |url-access=registration   | ||
}}</ref>  | }}</ref>  | ||
| Line 112: | Line 168: | ||
  |last4= Zhu |first4=D.  |   |last4= Zhu |first4=D.  | ||
  |title=Petroleum Production Systems  |   |title=Petroleum Production Systems  | ||
| + |  |edition=2  | ||
  |date=2013  |   |date=2013  | ||
| − |   |publisher=  | + |   |publisher=Prentice Hall  | 
| + |  |place=Westford, Massachusetts  | ||
  |isbn=978-0-13-703158-0  |   |isbn=978-0-13-703158-0  | ||
}}</ref>  | }}</ref>  | ||
| Line 126: | Line 184: | ||
  |location=London, England  |   |location=London, England  | ||
  |url=https://www.scribd.com/doc/269398414/Colebrook-White-1939  |   |url=https://www.scribd.com/doc/269398414/Colebrook-White-1939  | ||
| + |  |url-access=subscription  | ||
}}</ref>  | }}</ref>  | ||
| Line 137: | Line 196: | ||
  |pages=671–684    |   |pages=671–684    | ||
  |year=1944    |   |year=1944    | ||
| − |   |url=https://www.  | + |   |url=https://www.onepetro.org/journal-paper/SPE-2198-PA  | 
| + |  |url-access=subscription   | ||
}} </ref>  | }} </ref>  | ||
| + | |||
| + | <ref name= Lyons>{{cite book  | ||
| + |  |last1= Lyons |first1=W.C.  | ||
| + |  |title=Standard handbook of petroleum and natural gas engineering  | ||
| + |  |date= 1996  | ||
| + |  |volume=2  | ||
| + |  |publisher=Gulf Professional Publishing  | ||
| + |  |place=Houston, TX  | ||
| + |  |isbn=0-88415-643-5  | ||
| + | }}</ref>  | ||
| + | |||
| + | <ref name= Trina>{{cite thesis  | ||
| + |  |last= Trina |first=S.  | ||
| + |  |title=An integrated horizontal and vertical flow simulation with application to wax precipitation  | ||
| + |  |date= 2010  | ||
| + |  |type=Master of Engineering Thesis  | ||
| + |  |publisher=Memorial University of Newfoundland  | ||
| + |  |place= Canada  | ||
| + | }}</ref>  | ||
</references>  | </references>  | ||
| + | [[Category:pengtools]]  | ||
| + | [[Category:PQplot]]  | ||
| − | + | {{#seo:  | |
| − | + | |title=Hagedorn and Brown correlation  | |
| − | + | |titlemode= replace  | |
| + | |keywords=Hagedorn and Brown, correlation, equation, flow rate, fluids flow, Reynolds number, liquid hold up  | ||
| + | |description=Hagedorn and Brown correlation used to calculate reservoir inflow performance curve for nodal analysis  | ||
| + | }}  | ||
Latest revision as of 12:21, 1 November 2018
Contents
Brief
Hagedorn and Brown is an empirical two-phase flow correlation published in 1965 [1].
It doesn't distinguish between the flow regimes.
The heart of the Hagedorn and Brown method is a correlation for the liquid holdup HL [2].
Hagedorn and Brown is the default VLP correlation for the oil wells in the PQplot.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
Colebrook–White [3] equation for the Darcy's friction factor:
Reynolds two phase number:
Discussion
Why Hagedorn and Brown?
One of the consistently best correlations ...— Michael Economides et al[2]
Demo
Hagedorn and Brown correlation overview video:
In this video it's shown:
- What the Hagedorn and Brown correlation is
 - History and practical application
 - Math & Physics
 - Flow diagram to get the VLP curve
 - Workflow to find HL
 
Flow Diagram
Workflow HL
Modifications
1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup HL less than the no-slip holdup [2].
2. Use the Griffith correlation to define the bubble flow regime[2] and calculate HL.
3. Use watercut instead of WOR to account for the watercut = 100%.
Nomenclature
 = flow area, ft2
 = correlation group, dimensionless
 = formation factor, bbl/stb
 = coefficient for liquid viscosity number, dimensionless
 = pipe diameter, ft
 = depth, ft
 = correlation group, dimensionless
 = liquid holdup factor, fraction
 = friction factor, dimensionless
 = gas-liquid ratio, scf/bbl
 = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
 = pipe diameter number, dimensionless
 = gas velocity number, dimensionless
 = liquid viscosity number, dimensionless
 = liquid velocity number, dimensionless
 = pressure, psia
 = conversion constant equal to 32.174049, lbmft / lbfsec2
 = total liquid production rate, bbl/d
 = Reynolds number, dimensionless
 = solution gas-oil ratio, scf/stb
 = specific gravity, dimensionless
 = temperature, °R or °K, follow the subscript
 = velocity, ft/sec
 = water-oil ratio, bbl/bbl
 = gas compressibility factor, dimensionless
Greek symbols
 = absolute roughness, ft
 = viscosity, cp
 = density, lbm/ft3
 = integrated average density at flowing conditions, lbm/ft3
 = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 = secondary correlation factor, dimensionless
Subscripts
- g = gas
 - K = °K
 - L = liquid
 - m = gas/liquid mixture
 - o = oil
 - R = °R
 - SL = superficial liquid
 - SG = superficial gas
 - w = water
 
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Hagedorn, A. R.; Brown, K. E. (1965). "Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits"
. Journal of Petroleum Technology. 17(04) (SPE-940-PA): 475–484.
 - ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0.
 - ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"
. Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
 - ↑ Moody, L. F. (1944). "Friction factors for pipe flow"
. Transactions of the ASME. 66 (8): 671–684. 
 - ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5.
 - ↑ 6.0 6.1 Trina, S. (2010). An integrated horizontal and vertical flow simulation with application to wax precipitation (Master of Engineering Thesis). Canada: Memorial University of Newfoundland.
 









![N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}](/images/math/b/2/0/b207fe79b4a4ee53d466e182791ca737.png)



![N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}}](/images/math/d/d/8/dd824df0b6ec22aa724161b929e993fe.png)
![N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}}](/images/math/3/6/4/364153c39c1657b3b7bab8f7ed710e60.png)






