Difference between revisions of "Velarde solution gas oil ratio correlation"

From wiki.pengtools.com
Jump to: navigation, search
Line 8: Line 8:
 
:<math>R_s = \frac{R_{sr}}{R_{sb}}</math>
 
:<math>R_s = \frac{R_{sr}}{R_{sb}}</math>
  
:<math>R_{sr} = \alpha1 \times Pr^{\alpha2} + (1 - \alpha1) \times Pr^{\alpha3}</math><ref name= Velarde/>
+
:<math>R_{sr} = \alpha1 \times P^{\alpha2}_r + (1 - \alpha1) \times P^{\alpha3}_r</math><ref name= Velarde/>
  
 
where:
 
where:
 +
 +
:<math>P_r = \frac{P}{P_{bp}}</math>
  
 
A0 = 1.8653e-4<br/>
 
A0 = 1.8653e-4<br/>
Line 18: Line 20:
 
A4 = 1.056052<br/>
 
A4 = 1.056052<br/>
  
:<math> \alpha1 = A_0 \times SG^{A_1}_{gas} \times Y^{A_2}_{oil_API} \times {(T- 459.67)}^{A_3} \times P^{A_3}_{bp} </math>
+
:<math> \alpha1 = A_0 \times SG^{A_1}_g \times Y^{A_2}_{oil_API} \times {(T- 459.67)}^{A_3} \times P^{A_3}_{bp} </math>
  
 
B0 = 0.1004<br/>
 
B0 = 0.1004<br/>
Line 26: Line 28:
 
B4 = 0.302065<br/>
 
B4 = 0.302065<br/>
  
:<math>\alpha2 = B_0 \times SG^{B_1}_{gas} \times Y^{B_2}_{oil_API} \times {(T - 459.67)}^{B_3} \times P^{B_4}_{bp}</math>
+
:<math>\alpha2 = B_0 \times SG^{B_1}_g \times Y^{B_2}_{oil_API} \times {(T - 459.67)}^{B_3} \times P^{B_4}_{bp}</math>
  
 
C0 = 0.9167<br/>
 
C0 = 0.9167<br/>
Line 34: Line 36:
 
C4 = 0.047094<br/>
 
C4 = 0.047094<br/>
  
:<math>\alpha3 = C_0 \times SG^{C_1}_{gas} \times Y^{C_2}_{oil_API} \times {(T - 459.67)}^{C_3} \times P^{C_4}_{bp}</math>
+
:<math>\alpha3 = C_0 \times SG^{C_1}_g \times Y^{C_2}_{oil_API} \times {(T - 459.67)}^{C_3} \times P^{C_4}_{bp}</math>
  
 
=== Discussion  ===
 
=== Discussion  ===
Line 45: Line 47:
 
:<math> B_1..B_{4} </math> = coefficients
 
:<math> B_1..B_{4} </math> = coefficients
 
:<math> C_1..C_{4} </math> = coefficients
 
:<math> C_1..C_{4} </math> = coefficients
:<math> \rho_r </math> = reduced density, dimensionless
+
:<math> P </math> = pressure, MPA
:<math> P </math> = pressure, psia
+
:<math> P_{bp} </math> = bubble point pressure, MPA
:<math> P_{pc} </math> = pseudo critical pressure, psia
 
:<math> P_{pr} </math> = pseudoreduced pressure, dimensionless
 
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> T </math> = temperature, °R
 
:<math> T </math> = temperature, °R
:<math> T_{pc} </math> = pseudo critical temperature, °R
 
:<math> T_{pr} </math> = pseudoreduced temperature, dimensionless
 
 
:<math> Y_{oil_API} </math> = oil API gravity, dimensionless
 
:<math> Y_{oil_API} </math> = oil API gravity, dimensionless
:<math> z </math> = gas compressibility factor, dimensionless
+
 
  
 
=== References ===
 
=== References ===

Revision as of 11:22, 8 June 2017

Brief

Velarde correlation is ...

Math & Physics

R_s = \frac{R_{sr}}{R_{sb}}
R_{sr} = \alpha1 \times P^{\alpha2}_r + (1 - \alpha1) \times P^{\alpha3}_r[1]

where:

P_r = \frac{P}{P_{bp}}

A0 = 1.8653e-4
A1 = 1.672608
A2 = 0.929870
A3 = 0.247235
A4 = 1.056052

 \alpha1 = A_0 \times SG^{A_1}_g \times Y^{A_2}_{oil_API} \times {(T- 459.67)}^{A_3} \times P^{A_3}_{bp}

B0 = 0.1004
B1 = -1.00475
B2 = 0.337711
B3 = 0.132795
B4 = 0.302065

\alpha2 = B_0 \times SG^{B_1}_g \times Y^{B_2}_{oil_API} \times {(T - 459.67)}^{B_3} \times P^{B_4}_{bp}

C0 = 0.9167
C1 = -1.48548
C2 = -0.164741
C3 = -0.09133
C4 = 0.047094

\alpha3 = C_0 \times SG^{C_1}_g \times Y^{C_2}_{oil_API} \times {(T - 459.67)}^{C_3} \times P^{C_4}_{bp}

Discussion

Why the Velarde correlation?

Workflow

Application range

Nomenclature

 A_1..A_{4} = coefficients
 B_1..B_{4} = coefficients
 C_1..C_{4} = coefficients
 P = pressure, MPA
 P_{bp} = bubble point pressure, MPA
 SG_g = gas specific gravity, dimensionless
 T = temperature, °R
 Y_{oil_API} = oil API gravity, dimensionless


References

  1. Velarde, J.; Blasingame, T. A.; McCain Jr., W. D. (1997). "Correlation of Black Oil Properties At Pressures Below Bubble Point Pressure - A New Approach"Free registration required. Presented at the Annual Technical Meeting of CIM, Calgary, Alberta. Petroleum Society of Canada (PETSOC-97-93).