Difference between revisions of "Lee correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(References)
 
(34 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__TOC__
 
__TOC__
  
=== Brief ===
+
== Lee gas viscosity correlation ==
  
Lee correlation for viscosity of natural gases.
+
[[Lee correlation]] is the empirical correlation for the gas viscosity published in '''1966'''.
  
=== Math & Physics ===
+
[[File:LeeSample.png|thumb|right|400px|link=https://www.pengtools.com/pvtCalculator|Lee gas viscosity correlation at T=340F in the PVT software at pengtools.com|right]]
  
:<math> \mu_g = K\ e^{(X\ \rho_g^Y)} </math><ref name= Lee/>
+
== Math & Physics ==
 +
 
 +
:<math> \mu_g = \frac{K\ e^{(X\ \rho_g^Y)}}{10000} </math><ref name= Lee/>
 
where
 
where
:<math>  \rho_g =  \frac{1}{62.428} \times \frac{28.967\ SG_g\ p}{z\ 10.732\ T}</math>
 
  
:<math>  K = \frac{(0.00094+2\times10^{-6}\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math>
+
:<math>  K = \frac{(9.4+0.02\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math>
  
 
:<math> X = 3.5+\frac{986}{T}+0.001M_g </math>
 
:<math> X = 3.5+\frac{986}{T}+0.001M_g </math>
  
:<math> Y = 2.4-0.203\ X </math>
+
:<math> Y = 2.4-0.2\ X </math>
  
 
:<math> M_g = 28.967\ SG_g  </math>
 
:<math> M_g = 28.967\ SG_g  </math>
  
=== Discussion ===
+
:<math>  \rho_g \frac{1}{62.428} \times \frac{28.967\ SG_g\ p}{z\ 10.732\ T}</math>
Why the Lee correlation?
 
  
=== Application range ===  
+
== Application range ==  
  
:<math>  560 \le T < 800R\  or\  100 \le T < 340F</math>
+
:<math>  560 \le T < 800 </math>
  
:<math> 100 < P \le 8000 psia </math>
+
:<math> 100 < P \le 8000</math>
  
=== Nomenclature ===
+
== Nomenclature ==
 
:<math> \rho_g </math> = gas density, g/cm3
 
:<math> \rho_g </math> = gas density, g/cm3
 
:<math> \mu_g </math> = gas viscosity, cp
 
:<math> \mu_g </math> = gas viscosity, cp
:<math> M_g </math> = gas molecular weight
+
:<math> M_g </math> = gas molecular weight, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> p </math> = pressure, psia
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> SG_g </math> = gas specific gravity, dimensionless
Line 37: Line 37:
 
:<math> z </math> = gas compressibility factor, dimensionless
 
:<math> z </math> = gas compressibility factor, dimensionless
  
=== References ===
+
== References ==
 
<references>
 
<references>
 
<ref name=Lee>{{cite journal
 
<ref name=Lee>{{cite journal
Line 44: Line 44:
 
  |last3= Eakin |first3=B. E.
 
  |last3= Eakin |first3=B. E.
 
  |title=The Viscosity of Natural Gases
 
  |title=The Viscosity of Natural Gases
  |journal=J Pet Technol
+
  |journal=Journal of Petroleum Technology
 
  |number=SPE-1340-PA
 
  |number=SPE-1340-PA
 
  |date=1966
 
  |date=1966
Line 53: Line 53:
 
[[Category:pengtools]]
 
[[Category:pengtools]]
 
[[Category:PVT]]
 
[[Category:PVT]]
 +
 +
{{#seo:
 +
|title=Lee gas viscosity correlation
 +
|titlemode= replace
 +
|keywords=gas viscosity, Lee correlation
 +
|description=Lee correlation is the empirical correlation for the gas viscosity published in 1966.
 +
}}

Latest revision as of 11:56, 5 October 2020

Lee gas viscosity correlation

Lee correlation is the empirical correlation for the gas viscosity published in 1966.

Lee gas viscosity correlation at T=340F in the PVT software at pengtools.com

Math & Physics

 \mu_g = \frac{K\ e^{(X\ \rho_g^Y)}}{10000} [1]

where

  K = \frac{(9.4+0.02\ M_g)\ T^{1.5}}{(209+19M_g+T)}
 X = 3.5+\frac{986}{T}+0.001M_g
 Y = 2.4-0.2\ X
 M_g = 28.967\ SG_g
  \rho_g =  \frac{1}{62.428} \times \frac{28.967\ SG_g\ p}{z\ 10.732\ T}

Application range

  560 \le T < 800
 100 < P \le 8000

Nomenclature

 \rho_g = gas density, g/cm3
 \mu_g = gas viscosity, cp
 M_g = gas molecular weight, dimensionless
 p = pressure, psia
 SG_g = gas specific gravity, dimensionless
 T = temperature, °R
 z = gas compressibility factor, dimensionless

References

  1. Lee, A. B.; Gonzalez, M. H.; Eakin, B. E. (1966). "The Viscosity of Natural Gases". Journal of Petroleum Technology (SPE-1340-PA).