Hagedorn and Brown correlation

From wiki.pengtools.com
Revision as of 12:09, 21 March 2017 by MishaT (talk | contribs) (Workflow)
Jump to: navigation, search

Brief

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :H_L.

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}

where

 \bar \rho_m = \bar \rho_L H_L + \bar \rho_g (1 - H_L)

Colebrook–White equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}

Discussion

Block Diagram

Workflow

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR
 \bar \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} \frac{1}{1+WOR} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}
 \bar \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_{\circ R}}
 \mu_L = \mu_o \frac{1}{1 + WOR} + \mu_w \frac{WOR}{1 + WOR}
 \sigma = \sigma_o \frac{1}{1 + WOR} + \sigma_w \frac{WOR}{1 + WOR}
 N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}
 CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019
 v_{SL}
 v_{SG}
 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma}}
 N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma}}
 N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma}}

corr p1

 \frac{H_L}{\psi}

corr p2

 \psi
 H_L

Nomenclature

References