Difference between revisions of "Hagedorn and Brown correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Workflow)
(Workflow)
Line 23: Line 23:
 
:<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math>
 
:<math> M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR</math>
  
:<math> \rho_L= (\frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614)}{(1 + WOR)\ B_o)} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}</math>
+
:<math> \rho_L= (\frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{(1 + WOR)\ B_o)} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}</math>
  
 
== Block Diagram ==
 
== Block Diagram ==

Revision as of 15:58, 20 March 2017

Brief

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :H_L.

Math & Physics

Following the law of conservation of energy the basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}

where

 \bar \rho_m = \bar \rho_L H_L + \bar \rho_g (1 - H_L)

Colebrook–White equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)

Reynolds two phase number:

 Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}

Workflow

 M =SG_o\ 350.52\ \frac{1}{1+WOR}+SG_w\ 350.52\ \frac{WOR}{1+WOR}+SG_g\ 0.0764\ GLR
 \rho_L= (\frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{(1 + WOR)\ B_o)} + 62.4\ SG_w\ \frac{WOR}{1 + WOR}

Block Diagram

References