Difference between revisions of "Darcy's law"

From wiki.pengtools.com
Jump to: navigation, search
(Darcy's law History)
(Darcy's law)
Line 5: Line 5:
 
[[Darcy's law]] is the fundamental '''law''' of fluid motion in porous media published by '''Henry Darcy''' in '''1856''' <ref name=Darcy/>.
 
[[Darcy's law]] is the fundamental '''law''' of fluid motion in porous media published by '''Henry Darcy''' in '''1856''' <ref name=Darcy/>.
  
[[Darcy's law]] has been applied successfully to determine the flow through permeable media since the early days of [[Petroleum Engineering]].
+
[[Darcy's law]] has been successfully applied to determine the flow through permeable media since the early days of [[Petroleum Engineering]].
  
 
== Darcy's law History ==
 
== Darcy's law History ==

Revision as of 13:52, 22 July 2019

Darcy's law

Darcy's law. Equation and notations

Darcy's law is the fundamental law of fluid motion in porous media published by Henry Darcy in 1856 [1].

Darcy's law has been successfully applied to determine the flow through permeable media since the early days of Petroleum Engineering.

Darcy's law History

Henry Darcy worked on the design of a filter large enough to process the Dijon towns daily water requirement [2].

By flowing water through the sand pack Darcy established that, for any flow rate, the velocity of the flow was directly proportional to the difference in manometric heights[2]:

Les Fontaines Publiques de la Ville de Dijon.png

Darcy's law Equation

 q = -\frac{kA}{\mu} \frac{dP}{dL}

Conditions

  • Single fluid
  • Steady stay flow
  • Constant fluid compressibility
  • Constant temperature

Inflow Equations Derivation

Derivation of the Linear and Radial Inflow Equations Darcy's Law mtuz.png

Nomenclature

 A = cross-sectional area, cm2
 k = permeability, d
 L = length, cm
 P = pressure, atm
 q = flow rate, cm3/sec

Greek symbols

 \mu = Darcy's law fluid viscosity, cp

See Also

Darcy's law application in Petroleum Engineering Technology.

References

  1. Darcy, Henry (1856). "Les Fontaines Publiques de la Ville de Dijon". Paris: Victor Dalmont. 
  2. 2.0 2.1 Dake, L.P. (1978). Fundamentals of Reservoir Engineering. Amsterdam, Hetherlands: Elsevier Science. ISBN 0-444-41830-X.