Gilbert choke equation

From wiki.pengtools.com
Revision as of 18:33, 8 November 2024 by MishaT (talk | contribs) (Math and Physics)
Jump to: navigation, search

Brief

The most common formula used for multiphase flow through surface chokes by Gilbert [1][2].

Gilbert developed his equation from field data in California.

Math and Physics

P_{wh}=\frac{435 \times GLR^{0.546}}{D^{1.89}} \times q

Note that the equation is independent of the downstream pressure and assumes that the downstream pressure is less than 70% of the upstream pressure.

Nomenclature

g = 9.81, m/s^2
h = depth, m
H_d = fluid level, m
H_{perfs} = top of the perforations, m
H_{pump} = pump setting depth, m
P = pressure, atm
P_{ann} = annulus presssure, atm
P_{wf} = well flowing bottomhole pressure, atm
\rho = density, kg/m^3
SG_o = oil specific gravity, dimensionless
SG_w = water specific gravity, dimensionless
WCUT = well water cut, fraction

References

  1. Gilbert, W.E. (1954). Flowing and Gas-Lift Well Performance. Drilling and Production Practice API. p. 143. 
  2. Brown, Kermit (1984). The Technology of Artificial Lift Methods. Volume 4. Production Optimization of Oil and Gas Wells by Nodal System Analysis. Tulsa, Oklahoma: PennWellBookss.