OnPlan Comparison Study 2 Warpinski

From wiki.pengtools.com
Revision as of 07:12, 30 October 2018 by MishaT (talk | contribs) (Cases)
Jump to: navigation, search

Brief

The case study is based on Warpinski [1] paper published in 1994.

The onPlan calculates 6 cases described in the paper and shows good agreement in results.

Inputs

Paper Summary

This study is a comparison of hydraulic fracture models run using test data from the GRI Staged Field Experiment No. 3. Models compared include 2D, pseudo-3D, and 3D codes, run on up to eight different cases. Documented in this comparison are the differences in length, height, width, pressure, and efficiency. The purpose of this study is to provide the completions engineer with a practical comparison of the available models so that rational decisions can be made as to which model is optimal for a given application.
— Warpinski et al [1]

Simulators

Planar 3D models:

  • TerraFrac of TerraTek Inc.
  • HYFRAC3D by S.H. Advani of Lehigh U. - Planar 3D model
  • GOHFER by by Marathon Oil Co. - a unique finite-difference simulator

Planar pseudo-3D models:

  • STIMPLAN of NSI Inc.
  • ENERFRAC of Shell
  • TRIFRAC of S.A. Holditch & Assocs. Inc.
  • FRACPRO of Reservoir Engineering Systems (RES) Inc.
  • MFRAC-II of Meyer& Assocs.

Classic Perkins-Kern-Nordgren (PKN) and Geertsma-deKlerk (GDK) model:

  • PROP of Halliburton
  • Chevron 2D model
  • Conoco 2D model
  • Shell 2D model
  • pseudo-3D models run in constant-height mode

Cases

CASE1234
Formation Properties     
Young's modulus, psi 8.50E+068.50E+068.50E+068.50E+06
Poisson's ratio0.210.210.210.21
In situ stress, psi 5700570057005700
Fracture toughness, psi in^0.5 2000200020002000
Fluid Properties     
Viscosity, cP200 200 
K, (lbf-sec^n)/ft^2 0.5 0.5
n 0.06 0.06
Leak-off, ft/min^0.5 0.000250.000250.000250.00025
Spurt loss, gal/ft^20000
Other Data    
ModelPKNPKNKGDKGD
Pumping rate, bbl/min 50505050
Pumping volume, bbl10000100001000010000
Pupming time, min200200200200
Perforated interval, ft 170*170*170*170*
Pay-zone thickness, ft 170170170170
Depth, ft9170-93409170-93409170-93409170-9340

* - The PKN and GDK cases were run with a constant height (2-D) set at 170 ft (52 m).

Rock and reservoir data:

IntervalDepth (ft)Zone
Thickness (ft)
In Situ
Stress (psi)
Poisson's
Ratio
Young's
Modulus (10^6 psi)
Fracture
Toughness (psi/in^0.5)
Single-Layer Case
19170-934017057000.218.52000
3-Layer Case
18990-917018071500.36.52000
29170-934017057000.218.52000
39340-965031073500.295.52000
5-Layer Case
18990-917018071500.36.52000
29170-934017057000.218.52000
39340-93804073500.265.42000
49380-94557558000.27.92000
59455-965019582000.34.02000

Comparison

The fracture net pressure, half-length and width predicted by different simulators[1] are plotted below in dots. The overlapped fracDesign fracture net pressure, half-length and width shown as lines are in a good agreement with the simulation data.

Net Pressure
Case 1 Net Pressure
Half-length
Case 1 Half-length
Width
Case 1 Width
Net Pressure
Case 2 Net Pressure
Half-length
Case 2 Half-length
Width
Case 2 Width
Net Pressure
Case 3 Net Pressure
Half-length
Case 3 Half-length
Width
Case 3 Width
Net Pressure
Case 4 Net Pressure
Half-length
Case 4 Half-length
Width
Case 4 Width

fracDesign Models

The fracDesign models from this study are publicly available online at www.pengtools.com and can be opened through the links below:

Warpinski Case 1

Warpinski Case 2

Warpinski Case 3

Warpinski Case 4

References

  1. 1.0 1.1 1.2 N.R., Warpinski; Z.A., Moschovidis; C.D., Parker; I.S., Abou-Sayed (1994). "Comparison Study of Hydraulic Fracturing Models—Test Case: GRI Staged Field Experiment No. 3 (includes associated paper 28158 )" (SPE-25890-PA). Society of Petroleum Engineers.