Difference between revisions of "Hagedorn and Brown correlation"
From wiki.pengtools.com
(→References) |
(→References) |
||
| Line 66: | Line 66: | ||
== References == | == References == | ||
| − | |||
[http://www.fekete.com/SAN/WebHelp/virtuwell/webhelp/c-te-pressdrop.htm#Introduction fekete.com] | [http://www.fekete.com/SAN/WebHelp/virtuwell/webhelp/c-te-pressdrop.htm#Introduction fekete.com] | ||
| Line 73: | Line 72: | ||
| − | <ref> Hagedorn, A. R., & Brown, K. E. (1965). Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, 17(04), 475-484. </ref> | + | lala<ref> Hagedorn, A. R., & Brown, K. E. (1965). Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, 17(04), 475-484. </ref> |
| − | |||
[[Category:PEngTools]] | [[Category:PEngTools]] | ||
[[Category:pqPlot]] | [[Category:pqPlot]] | ||
Revision as of 18:46, 21 March 2017
Contents
Brief
Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.
It doesn't distinguish between the flow regimes.
The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :
.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
Colebrook–White equation for the Darcy's friction factor:
Reynolds two phase number:
Discussion
Block Diagram
Workflow
Nomenclature
References
wikipedia.org Darcy friction factor formulae
- ↑ Hagedorn, A. R., & Brown, K. E. (1965). Experimental study of pressure gradients occurring during continuous two-phase flow in small-diameter vertical conduits. Journal of Petroleum Technology, 17(04), 475-484.









![N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}](/images/math/b/2/0/b207fe79b4a4ee53d466e182791ca737.png)



![N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}}](/images/math/d/d/8/dd824df0b6ec22aa724161b929e993fe.png)
![N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}}](/images/math/3/6/4/364153c39c1657b3b7bab8f7ed710e60.png)






