Difference between revisions of "McCain Oil Formation Volume Factor equation"

From wiki.pengtools.com
Jump to: navigation, search
(McCain Oil Formation Volume Factor correlation)
(Nomenclature)
Line 39: Line 39:
  
 
== Nomenclature ==
 
== Nomenclature ==
:<math> c_o </math> = oil compressibility, 1/psia
+
:<math> B_o </math> = oil formation volume factor, rm<sup>3</sup>/sm<sup>3</sup>
:<math> P </math> = pressure, psia
+
:<math> R_s </math> =  solution gas-oil ratio, sm<sup>3</sup>/sm<sup>3</sup>
:<math> R_s </math> =  solution gas-oil ratio, scf/stb
 
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> SG_g </math> = gas specific gravity, dimensionless
:<math> SG_{gSP} </math> = gas specific gravity at separator pressure, dimensionless
+
:<math> \rho_{oR} </math> = oil density at reservoir conditions, kg/m<sup>3</sup>
:<math> SG_o </math> = oil specific gravity, dimensionless
+
:<math> \rho_{STO} </math> = stock tank oil density, kg/m<sup>3</sup>
:<math> T </math> = temperature, °F
 
 
 
:<math> \rho_{a} </math> = apparent density of surface gas if it were a liquid, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{ob} </math> = liquid density at the bubble point pressure, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{bs} </math> = liquid density at reservoir pressure and 60°F, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_o </math> = oil density, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \rho_{po} </math> = pseudoliquid formed by recombination of surface gas and liquid at standard conditions, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \triangle \rho_{P} </math> = adjustment to liquid density due to pressure, lb<sub>m</sub>/ft<sup>3</sup>
 
:<math> \triangle \rho_{T} </math> = adjustment to liquid density due to temperature, lb<sub>m</sub>/ft<sup>3</sup>
 
  
 
===Subscripts===
 
===Subscripts===

Revision as of 10:38, 28 September 2020

McCain Oil Formation Volume Factor equation

McCain equation is an material balance equation for the oil formation volume factor published in 1990 [1].

McCain Oil Formation Volume Factor correlation in the PVT Software

Math & Physics

B_o = \frac{\rho_{STO}+1.22117R_s\gamma_g}{\rho_{oR}}

Example. Calculation of the oil density

Example source [2]

Input data

R_s = 53.24 sm3/sm3
SG_o = 0.85 or 35 API
SG_g = 0.75
T = 90C or 363K
P = 10 MPa

Calculate oil density at p = 10 MPa?

Solution

\rho_o = 749.645 kg/m3

The solution is available in the online PVT calculator software model at www.pengtools.com

Application range

Description of the Data Used[3]:

  133 \le P_b \le 6,700
  77 \le T \le 327
  18 \le R_{sb} \le 1,975
  0.76 \le SG_o \le 0.95
  0.556 \le SG_g \le 1.237
  31.3 \le \rho_{ob} \le 55.77

Number of data sets = 684

Nomenclature

 B_o = oil formation volume factor, rm3/sm3
 R_s = solution gas-oil ratio, sm3/sm3
 SG_g = gas specific gravity, dimensionless
 \rho_{oR} = oil density at reservoir conditions, kg/m3
 \rho_{STO} = stock tank oil density, kg/m3

Subscripts

b - bubble point
g - gas
o - oil

References

  1. McCain, W.D. Jr. (1990). Properties of Petroleum Fluids (2 ed.). Oklahoma: PennWell Corp. ISBN 978-0878143351. 
  2. Wolcott, Don (2009). Applied Waterflood Field DevelopmentPaid subscription required. Houston: Energy Tribune Publishing Inc. 
  3. McCain, W.D. Jr.; Hill, N. C. (1995). "Correlations for Liquid Densities and Evolved Gas Specific Gravities for Black Oils During Pressure Depletion"Free registration required. Society of Petroleum Engineers (SPE-30773-MS).