Difference between revisions of "Decline Curve Analysis"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 16: Line 16:
  
 
<tr>
 
<tr>
<td>General form equation <ref name = DDA/></td>
+
<td>Hyperbolic decline, 0 < b < 1 <ref name = DDA/></td>
 
<td><math>q(t) = \frac{q_i}{(1+b\ D_i\ t)^{1/b}}</math></td>
 
<td><math>q(t) = \frac{q_i}{(1+b\ D_i\ t)^{1/b}}</math></td>
 
<td><math> Q = \frac{q^b_i}{D_i\ (1-b)} (q^{1-b}_i-q(t)^{1-b})</math></td>
 
<td><math> Q = \frac{q^b_i}{D_i\ (1-b)} (q^{1-b}_i-q(t)^{1-b})</math></td>
Line 24: Line 24:
 
<td>Exponential decline, b = 0</td>
 
<td>Exponential decline, b = 0</td>
 
<td><math>q(t) = {q_i}^{-D_i\ t}</math></td>
 
<td><math>q(t) = {q_i}^{-D_i\ t}</math></td>
<td><math>q(t) = {q_i}^{-D_i\ t}</math></td>
+
<td><math>Q = \frac{q_i-q(t)}{D_i}</math></td>
 +
</tr>
 +
 
 +
<tr>
 +
<td>Harmonic decline, b = 1</td>
 +
<td><math>q(t) = \frac{q_i}{1+D_i\ t}</math></td>
 +
<td><math>Q = \frac{q_i}{D_i} ln{\frac{q_i}{q(t)}}</math></td>
 
</tr>
 
</tr>
  

Revision as of 15:37, 26 October 2017

Brief

Decline Curve Analysis DCA is an empirical method for rate decline analysis and rate forecasting published by Arps in 1945 [1].

DCA is applied for Wells and Reservoirs production forecasting.

Math & Physics

Note Rate Cumulative
Hyperbolic decline, 0 < b < 1 [2] q(t) = \frac{q_i}{(1+b\ D_i\ t)^{1/b}}  Q = \frac{q^b_i}{D_i\ (1-b)} (q^{1-b}_i-q(t)^{1-b})
Exponential decline, b = 0 q(t) = {q_i}^{-D_i\ t} Q = \frac{q_i-q(t)}{D_i}
Harmonic decline, b = 1 q(t) = \frac{q_i}{1+D_i\ t} Q = \frac{q_i}{D_i} ln{\frac{q_i}{q(t)}}

References

  1. Arps, J. J. (1945). "Analysis of Decline Curves"Paid subscription required. Transactions of the AIME. Society of Petroleum Engineers. 160 (01). 
  2. "KAPPA Dynamic Data Analysis (DDA) book"Paid subscription required.