Difference between revisions of "Beggs and Brill correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Workflow)
(Workflow)
Line 82: Line 82:
  
 
:<math> v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
 
:<math> v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}</math><ref name= Lyons/>
 +
 +
:<math> G_m = \rho_L \times v_{SL} + \rho_g \times  v_{SG}</math><ref name= Lyons/>
 +
 +
 +
----
 +
  
 
:<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math><ref name= HB/>
 
:<math> N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}</math><ref name= HB/>

Revision as of 12:11, 26 May 2017

Brief

Beggs and Brill is an empirical two-phase flow correlation published in 1972 [1].

It distinguish between 4 flow regimes.

Beggs and Brill is the default VLP correlation in sPipe.

Beggs and Brill in sPipe Vs GAP

Math & Physics

Fluid flow energy balance

 -144 \frac{\Delta p}{\Delta z} = \frac{sin(\theta)\ \bar \rho_m + \frac{f'\ G_m\ v_m}{2\ g_c\ D}}{1- \bar \rho_m\ \frac{v_m\ v_{SG}}{g_c\ p}}[1]

where

 \bar \rho_m = \rho_L H_L + \rho_g (1 - H_L)[1]

Flow patterns

Froude number:

 N_{FR} = \frac{{v_m}^2}{g_c\ D}[1]

SEGREGATED:  (C_L < 0.01\ \&\ N_{FR}< L_1)\ or\ (C_L\ge0.01\ \&\ N_{FR}<L_2)[2]

TRANSITION:  C_L \ge 0.01\ \&\ L_2 \le N_{FR} \le L_3[2]

INTERMITTENT:  (0.01 \le C_L <0.4\ \&\  L_3<N_{FR}\le L_1)\ or\ ( C_L\ge0.4\ \&\ L_3<N_{FR} \le L_4)[2]

DISTRIBUTED:  (C_L < 0.4\ \&\ N_{FR} \ge L_1)\ or\ (C_L\ge0.4\ \&\ N_{FR}>L_4)[2]

Liquid Holdup HL

SEGREGATED, INTERMITTENT, DISTRIBUTED:  H_L = H_{L(0)} \times \psi [2]

TRANSITION:  H_L = A \times H_{L(segregated)} + (1-A) \times {H_{L(intermittent)}} [2]

where:

 A = \frac{L_3-N_{FR}}{L_3-L_2}[2]

Friction factor

No slip Reynolds two phase number:

 Re = 1488 \times \frac {\rho_{m,ns} v_m D} { {\mu_L}^{C_L} {\mu_g}^{1-C_L} } [2]

Colebrook–White [3] equation for the Darcy's friction factor:

 \frac{1}{\sqrt{f}}= -2 \log \left( \frac { \varepsilon} {3.7 D} + \frac {2.51} {\mathrm{Re} \sqrt{f}} \right)[4]

Corrected two phase friction factor:

 f' = f \times  e^S[2]

where

 S = \frac{ ln(y)}{ -0.0523 + 3.182\ ln(y) - 0.8725\ ln(y)^2 + 0.01853\ ln(y)^ 4}[2]

and

 y = \frac{ C_L} { {H_L}^2 } [2]

with constraint:

 S = ln (2.2\ y - 1.2), when\ 1 < y < 1.2 [2]

Discussion

Why Hagedorn and Brown?

One of the consistently best correlations ...
— Michael Economides et al[5]

Flow Diagram

HB Block Diagram

Workflow

 \rho_L= \frac{62.4\ SG_o + \frac{Rs\ 0.0764\ SG_g}{5.614}}{B_o} (1-WCUT) + \frac{62.4\ SG_w}{B_w}\ WCUT[6]
 \rho_g = \frac{28.967\ SG_g\ p}{z\ 10.732\ T_R} [6]
 \mu_L = \mu_o (1-WCUT) + \mu_w\ WCUT[6]
 \sigma_L = \sigma_o (1-WCUT) + \sigma_w\ WCUT[6]
 v_{SL} = \frac{5.615 q_L}{86400 A_p} \left ( B_o (1-WCUT) + B_w\ WCUT \right )[6]
 v_{SG} = \frac{q_g}{86400 A_p}\ \frac{14.7}{p}\ \frac{T_K}{520}\ \frac{z}{1}[6]
 G_m = \rho_L \times v_{SL} + \rho_g \times  v_{SG}[6]




 N_L = 0.15726\ \mu_L \sqrt[4]{\frac{1}{\rho_L \sigma_L^3}}[7]
 CN_L = 0.061\ N_L^3 - 0.0929\ N_L^2 + 0.0505\ N_L + 0.0019 [5]


 N_{LV} = 1.938\ v_{SL}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [7]
 N_{GV} = 1.938\ v_{SG}\ \sqrt[4]{\frac{\rho_L}{\sigma_L}} [7]
 N_{D} = 120.872\ D \sqrt{\frac{\rho_L}{\sigma_L}} [7]
 H = \frac{N_{LV}}{N_{GV}^{0.575}}\  \left ( \frac{p}{14.7} \right )^{0.1} \frac{CN_L}{N_D} [5]
 \frac{H_L}{\psi} = \sqrt{\frac{0.0047+1123.32 H + 729489.64H^2}{1+1097.1566 H + 722153.97 H^2}} [8]
 B = \frac{N_{GV} N_{LV}^{0.38}}{N_{D}^{2.14}} [5]
 \psi = \begin{cases} 
27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999,  &\mbox{if } B \le 0.025 \\
-533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B > 0.025 \\
2.5714 B +1.5962, & \mbox{if }B > 0.055
\end{cases} [8]
 H_L = \frac{H_L}{\psi} \times \psi[7]


SEGREGATED:  H_{L(0)} = 0.98 \frac{ {C_L}^{0.4846} } { {N_{FR}}^{0.0868}} [2]

INTERMITTENT:  H_{L(0)} = 0.845 \frac{ {C_L}^{0.5351} } { {N_{FR}}^{0.0173}}[2]

DISTRIBUTED:  H_{L(0)} = 1.065\frac{ {C_L}^{0.5824} } { {N_{FR}}^{0.0609}}[2]

with the constraint  H_L \ge C_L[2]

 \psi = 1 + C\ (sin(1.8\ \theta) - 0.333\ (sin(1.8\ \theta))^3)[2]


Uphill

SEGREGATED:  C = (1-C_L)\ ln( 0.011 \times {N_{LV}}^{3.539}\times {C_L}^{-3.768}\times {F_{FR}}^{-1.614})[2]

INTERMITTENT:  C = (1-C_L)\ ln( 2.96\times {N_{LV}}^{-0.4473}\times {C_L}^{0.305}\times {F_{FR}}^{0.0978})[2]

DISTRIBUTED:  C=0[2]

Downhill

ALL:  C = (1-C_L)\ ln( 4.7\times {N_{LV}}^{0.1244}\times {C_L}^{-0.3692}\times {F_{FR}}^{-0.5056})[2]

Modifications

1. Use the no-slip holdup when the original empirical correlation predicts a liquid holdup HL less than the no-slip holdup [5].

2. Use the Griffith correlation to define the bubble flow regime[5] and calculate HL.

3. Use watercut instead of WOR to account for the watercut = 100%.

Nomenclature

 A_p = flow area, ft2
 B = correlation group, dimensionless
 B = formation factor, bbl/stb
 C = coefficient for liquid viscosity number, dimensionless
 D = pipe diameter, ft
 h = depth, ft
 H = correlation group, dimensionless
 H_L = liquid holdup factor, dimensionless
 f = friction factor, dimensionless
 GLR = gas-liquid ratio, scf/bbl
 M = total mass of oil, water and gas associated with 1 bbl of liquid flowing into and out of the flow string, lbm/bbl
 N_D = pipe diameter number, dimensionless
 N_GV = gas velocity number, dimensionless
 N_L = liquid viscosity number, dimensionless
 N_LV = liquid velocity number, dimensionless
 p = pressure, psia
 q_c = conversion constant equal to 32.174049, lbmft / lbfsec2
 q = total liquid production rate, bbl/d
 Re = Reynolds number, dimensionless
 R_s = solution gas-oil ratio, scf/stb
 SG = specific gravity, dimensionless
 T = temperature, °R or °K, follow the subscript
 v = velocity, ft/sec
 WOR = water-oil ratio, bbl/bbl
 z = gas compressibility factor, dimensionless

Greek symbols

 \varepsilon = absolute roughness, ft
 \mu = viscosity, cp
 \rho = density, lbm/ft3
 \bar \rho = integrated average density at flowing conditions, lbm/ft2
 \sigma = surface tension of liquid-air interface, dynes/cm (ref. values: 72 - water, 35 - oil)
 \psi = secondary correlation factor, dimensionless

Subscripts

g = gas
K = °K
L = liquid
m = gas/liquid mixture
o = oil
R = °R
SL = superficial liquid
SG = superficial gas
w = water

References

  1. 1.0 1.1 1.2 1.3 Beggs, H. D.; Brill, J. P. (May 1973). "A Study of Two-Phase Flow in Inclined Pipes"Paid subscription required. Journal of Petroleum Technology. AIME. 255 (SPE-4007-PA). 
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 Cite error: Invalid <ref> tag; no text was provided for refs named BB1991
  3. Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws"Paid subscription required. Journal of the Institution of Civil Engineers. London, England. 11: 133–156. 
  4. Moody, L. F. (1944). "Friction factors for pipe flow"Paid subscription required. Transactions of the ASME. 66 (8): 671–684. 
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Economides, M.J.; Hill, A.D.; Economides, C.E.; Zhu, D. (2013). Petroleum Production Systems (2 ed.). Westford, Massachusetts: Prentice Hall. ISBN 978-0-13-703158-0. 
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 Lyons, W.C. (1996). Standard handbook of petroleum and natural gas engineering. 2. Houston, TX: Gulf Professional Publishing. ISBN 0-88415-643-5. 
  7. 7.0 7.1 7.2 7.3 7.4 Cite error: Invalid <ref> tag; no text was provided for refs named HB
  8. 8.0 8.1 Trina, S. (2010). An integrated horizontal and vertical flow simulation with application to wax precipitation (Master of Engineering Thesis). Canada: Memorial University of Newfoundland.