Difference between revisions of "Lee correlation"
From wiki.pengtools.com
(→Math & Physics) |
(→Math & Physics) |
||
Line 9: | Line 9: | ||
:<math> \mu_g = K\ e^{(X\ \rho_g^Y)} </math><ref name= Lee/> | :<math> \mu_g = K\ e^{(X\ \rho_g^Y)} </math><ref name= Lee/> | ||
where | where | ||
− | |||
:<math> K = \frac{(0.00094+2\times10^{-6}\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math> | :<math> K = \frac{(0.00094+2\times10^{-6}\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math> | ||
Line 18: | Line 17: | ||
:<math> M_g = 28.967\ SG_g </math> | :<math> M_g = 28.967\ SG_g </math> | ||
+ | |||
+ | :<math> \rho_g = \frac{1}{62.428} \times \frac{28.967\ SG_g\ p}{z\ 10.732\ T}</math> | ||
=== Discussion === | === Discussion === |
Revision as of 14:25, 2 May 2017
Brief
Lee correlation for viscosity of natural gases.
Math & Physics
where
Discussion
Why the Lee correlation?
Application range
Nomenclature
- = gas density, g/cm3
- = gas viscosity, cp
- = gas molecular weight
- = pressure, psia
- = gas specific gravity, dimensionless
- = temperature, °R
- = gas compressibility factor, dimensionless
References
- ↑ Lee, A. B.; Gonzalez, M. H.; Eakin, B. E. (1966). "The Viscosity of Natural Gases". J Pet Technol (SPE-1340-PA).