Difference between revisions of "Lee correlation"
From wiki.pengtools.com
Gprotsykov (talk | contribs) |
Gprotsykov (talk | contribs) |
||
Line 9: | Line 9: | ||
:<math> \mu_g = K\ e^{X\ \rho^Y} </math><ref name= Lee/> | :<math> \mu_g = K\ e^{X\ \rho^Y} </math><ref name= Lee/> | ||
where | where | ||
− | :<math> \rho = 0.000149496\ \frac{\ M_g}{z\ T}</math> | + | :<math> \rho = 0.000149496\ P\ \frac{\ M_g}{z\ T}</math> |
:<math> K = \frac{(0.00094+2\times10^-6\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math> | :<math> K = \frac{(0.00094+2\times10^-6\ M_g)\ T^{1.5}}{(209+19M_g+T)}</math> |
Revision as of 08:53, 2 May 2017
Brief
Lee correlation for viscosity of natural gases.
Math & Physics
where
Discussion
Why the Lee correlation?
Application range
Nomenclature
- = gas density, g/cm3
- = gas viscosity, cp
- = gas molecular weight
- = pressure, psia
- = gas specific gravity, dimensionless
- = temperature, °R
- = gas compressibility factor, dimensionless
References
- ↑ Lee, A. B.; Gonzalez, M. H.; Eakin, B. E. (1966). "The Viscosity of Natural Gases". J Pet Technol (SPE-1340-PA).