Difference between revisions of "Gray correlation"
From wiki.pengtools.com
(→Workflow ε') |
(→Math & Physics) |
||
Line 18: | Line 18: | ||
Reynolds two phase number: | Reynolds two phase number: | ||
:<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}</math> | :<math> Re = 2.2 \times 10^{-2} \frac {q_L M}{D \mu_L^{H_L} \mu_g^{(1-H_L)}}</math> | ||
+ | |||
+ | The pseudo wall roughness <ref name= Gray/>: | ||
+ | :<math> \varepsilon' = \begin{cases} | ||
+ | \frac{28.5}{453.592} \frac{\sigma_L}{\rho_m v_m^2}, &\mbox{if } R \geqslant 0.007 \\ | ||
+ | \varepsilon + R \frac{\varepsilon'-\varepsilon}{0.0007}, & \mbox{if } R < 0.007 | ||
+ | \end{cases} </math>, with the limit <math> \varepsilon' \geqslant 2.77 \times 10^{-5}</math> | ||
== Discussion == | == Discussion == |
Revision as of 18:48, 4 April 2017
Contents
Brief
- The boundary between the bubble and slug flow[1]
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
- , slip mixture density
- , no-slip mixture density
Colebrook–White [2] equation for the Darcy's friction factor:
Reynolds two phase number:
The pseudo wall roughness [1]:
- , with the limit
Discussion
Workflow Hg
Workflow ε'
- , with the limit [1]
Nomenclature
NV velocity number
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Gray, H. E. (1974). "Vertical Flow Correlation in Gas Wells". User manual for API 14B, Subsurface controlled safety valve sizing computer program. API.
- ↑ Colebrook, C. F. (1938–1939). "Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws". Journal of the Institution of Civil Engineers. London, England. 11: 133–156.
- ↑ Moody, L. F. (1944). "Friction factors for pipe flow". Transactions of the ASME. 66 (8): 671–684.