Difference between revisions of "Hagedorn and Brown correlation"
From wiki.pengtools.com
(→Workflow) |
(→Workflow) |
||
Line 56: | Line 56: | ||
:<math> \psi = \begin{cases} | :<math> \psi = \begin{cases} | ||
− | + | 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999, & \mbox{if }B\mbox{ <= 0.025} \\ | |
− | + | -533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B\mbox{ >0.025} | |
+ | 2.5714 B +1.5962, & \mbox{if }B\mbox{ >0.055} | ||
\end{cases} </math> | \end{cases} </math> | ||
Revision as of 12:33, 21 March 2017
Contents
Brief
Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.
It doesn't distinguish between the flow regimes.
The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :.
Math & Physics
Following the law of conservation of energy the basic steady state flow equation is:
where
Colebrook–White equation for the Darcy's friction factor:
Reynolds two phase number:
Discussion
Block Diagram
Workflow
- Failed to parse (lexing error): \psi = \begin{cases} 27170 B^3 - 317.52 B^2 + 0.5472 B + 0.9999, & \mbox{if }B\mbox{ <= 0.025} \\ -533.33 B^2 + 58.524 B + 0.1171, & \mbox{if }B\mbox{ >0.025} 2.5714 B +1.5962, & \mbox{if }B\mbox{ >0.055} \end{cases}