Difference between revisions of "Hagedorn and Brown correlation"

From wiki.pengtools.com
Jump to: navigation, search
Line 7: Line 7:
 
The heart of the [[Hagedorn and Brown]] method is a correlation for the liquid holdup :<math>H_L</math>.
 
The heart of the [[Hagedorn and Brown]] method is a correlation for the liquid holdup :<math>H_L</math>.
  
== Workflow ==
+
The basic steady state flow equation is:
For each pipe segment find:
 
 
:<math> 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math>
 
:<math> 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}</math>
 
where
 
where
 
:<math> \bar \rho_m = \bar \rho_L H_L + \bar \rho_g (1 - H_L)</math>
 
:<math> \bar \rho_m = \bar \rho_L H_L + \bar \rho_g (1 - H_L)</math>
 +
 +
== Workflow ==
 +
For each pipe segment find:
  
 
== Block Diagram ==
 
== Block Diagram ==

Revision as of 14:48, 14 March 2017

Info

Hagedorn and Brown is an empirical two-phase flow correlation published in 1965.

It doesn't distinguish between the flow regimes.

The heart of the Hagedorn and Brown method is a correlation for the liquid holdup :H_L.

The basic steady state flow equation is:

 144 \frac{\Delta p}{\Delta h} = \bar \rho_m + \frac{f q_L^2 M^2}{2.9652 \times 10^{11} D^5 \bar \rho_m} + \bar \rho_m \frac{\Delta{(\frac{v_m^2}{2g_c}})}{\Delta h}

where

 \bar \rho_m = \bar \rho_L H_L + \bar \rho_g (1 - H_L)

Workflow

For each pipe segment find:

Block Diagram

References