Difference between revisions of "Gas Flowing Material Balance"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 10: Line 10:
 
Combining the gas pseudo state flow equation and the [[Gas Material Balance]] equation:
 
Combining the gas pseudo state flow equation and the [[Gas Material Balance]] equation:
  
:<math> P_{\bar{P}}= P_{P_{wf}} + q b_{pss}</math> <ref name=Mattar2005/>
+
:<math> P_{\bar{P}}= P_{P_{wf}} + q_g b_{pss}</math> <ref name=Mattar2005/>
  
 
where
 
where
  
 
:<math> b_{pss} = \frac{1422 \times 10^3\ T_R}{kh\ J_D}</math>
 
:<math> b_{pss} = \frac{1422 \times 10^3\ T_R}{kh\ J_D}</math>
 +
 +
Material balance pseudo-time:
 +
 +
:<math> t_{ca} = \frac{mu_{gi} c_{gi}}{q_g}\int\limits_{0}^{t}/frac{q_g}{\bar{\mu_g} \bar{\bar{c_g}}}dt</math>
  
 
== References ==
 
== References ==

Revision as of 12:29, 24 November 2017

Brief

Gas Flowing Material Balance is the advanced engineering technique to determine the Reservoirs GIIP and recovery as well as Well's EUR and JD.

Gas Flowing Material Balance is applied on the Well level given readily available well flowing data: production rate and tubing head pressure.

Math & Physics

Combining the gas pseudo state flow equation and the Gas Material Balance equation:

 P_{\bar{P}}= P_{P_{wf}} + q_g b_{pss} [1]

where

 b_{pss} = \frac{1422 \times 10^3\ T_R}{kh\ J_D}

Material balance pseudo-time:

 t_{ca} = \frac{mu_{gi} c_{gi}}{q_g}\int\limits_{0}^{t}/frac{q_g}{\bar{\mu_g} \bar{\bar{c_g}}}dt

References

  1. Mattar, L.; Anderson, D (2005). "Dynamic Material Balance (Oil or Gas-In-Place Without Shut-Ins)" (PDF). CIPC.