Difference between revisions of "McCain Oil density correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 28: Line 28:
 
where
 
where
  
:<math>\rho_{p} = ( ( 0.617 + 16.181 (10^{-0.0425\ \rho_{po}}))\ \frac{P}{1000} - 0.01 ( 0.299 + 263 (10^{-0.0603\ \rho_{po}})\ {\frac{P}{1000}}^2 </math>
+
:<math>\rho_{p} = ( ( 0.617 + 16.181 (10^{-0.0425\ \rho_{po}}))\ \frac{P}{1000} - 0.01 ( 0.299 + 263 (10^{-0.0603\ \rho_{po}})\ (\frac{P}{1000})^2 </math>
  
  

Revision as of 12:16, 26 July 2017

Brief

McCain is an empirical correlation for the oil density published in 1995 [1].

Oil density in the PVT Tool

Math & Physics

Pseudoliquid density:

\rho_{po} = 52.8 - 0.01 R_{sb}

Apparent liquid density:

\rho_a = -49.8930 + 85.0149\ SG_g - 3.70373\ SG_g\ \rho_{po} + 0.0479818\ SG_g\ \rho_{po}^2 + 2.98914\ \rho_{po} - 0.0356888\ \rho_{po}^2

Next pseudoliquid density:

\rho_{po} = \frac{R_s\ SG_g + 4,600\ SG_o}{73.71+R_s\ SG_g\ / \rho_a}

Iterate until pseudoliquid densities are equal.

Adjust density to the pressure of interest:

\rho_{bs} = \rho_{po} + \delta \rho_p

where

\rho_{p} = ( ( 0.617 + 16.181 (10^{-0.0425\ \rho_{po}}))\ \frac{P}{1000} - 0.01 ( 0.299 + 263 (10^{-0.0603\ \rho_{po}})\ (\frac{P}{1000})^2


Adjust density to the temperature of interest:


Adjust density above the bubble point pressure:

Discussion

Application range

Description of the Data Used[2]:

  20 \le R_s \le 2,070
  0.75 \le SG_o \le 0.96
  0 \le P \le 5250
  70 \le T \le 295

Number of oil systems = 600
Number of dead oil observations = 460
Number of live oil observations = 2,073

Nomenclature

 A = coefficient
 B = coefficient
 m = coefficient
 P = pressure, psia
 R_s = solution gas-oil ratio, scf/stb
 SG_o = oil specific gravity, dimensionless
 T = temperature, °F
 x = coefficient
 \mu = viscosity, cP

Subscripts

b - bubble point
od - dead oil
os - saturated oil
o - undersaturated oil

References

  1. McCain, W.D. Jr.; Hill, N. C. (1995). "Correlations for Liquid Densities and Evolved Gas Specific Gravities for Black Oils During Pressure Depletion"Free registration required. Society of Petroleum Engineers (SPE-30773-MS). 
  2. Cite error: Invalid <ref> tag; no text was provided for refs named BR1975