Difference between revisions of "Beggs and Robinson Oil Viscosity correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Math & Physics)
Line 27: Line 27:
 
Undersaturated oil viscosity:
 
Undersaturated oil viscosity:
  
:<math>\mu_{o} =  mu_{os} (p/p_b)^m </math>
+
:<math>\mu_{o} =  mu_{os} (P/P_b)^m </math>
  
 
where:
 
where:
  
:<math>m = 2.6\ p^{1.187}\ e^{-11.513-8.98 \times 10^{-5}\ p}</math>
+
:<math>m = 2.6\ P^{1.187}\ e^{(-11.513-8.98 \times 10^{-5}\ P)}</math>
  
 
=== Discussion  ===
 
=== Discussion  ===

Revision as of 10:02, 25 July 2017

Brief

Beggs - Robinson is an empirical correlation for the oil viscosity published in 1975 [1].

Math & Physics

Dead oil viscosity:

\mu_{od} = 10^X-1[2]

where:

X = T^{-1.163} \times e^{(13.108-6.591/SG_{o})}

Saturated oil viscosity:

\mu_{os} =  A \mu_{od}^B

where:

 A = 10.715\ (R_s + 100)^{-0.515}
 B = 5.44\ (R_s + 150)^{-0.338}

Undersaturated oil viscosity:

\mu_{o} =  mu_{os} (P/P_b)^m

where:

m = 2.6\ P^{1.187}\ e^{(-11.513-8.98 \times 10^{-5}\ P)}

Discussion

Workflow

Application range

Nomenclature

 A_0..A_{2} = coefficients
 B_0..B_{2} = coefficients
 C_0..C_{2} = coefficients
 P = pressure, MPA
 P_{bp} = bubble point pressure, MPA
 R_s = oil gas ration, m3/m3
 SG_g = gas specific gravity, dimensionless
 T = temperature, °R
 Y_{oil_API} = oil API gravity, dimensionless

References

  1. Beggs, H. D.; Robinson, J. R. (September 1975). "Estimating the Viscosity of Crude Oil Systems"Free registration required. Journal of Petroleum Technology. 27(09) (SPE-5434-PA). 
  2. Vazquez, M.; Beggs, H.D. (1980). "Correlations for Fluid Physical Property Prediction."Free registration required. Society of Petroleum Engineers (SPE-6719-PA).