Difference between revisions of "Lee correlation"

From wiki.pengtools.com
Jump to: navigation, search
(Math & Physics)
(Nomenclature)
Line 32: Line 32:
 
:<math> \rho_g </math> = gas density, g/cm3
 
:<math> \rho_g </math> = gas density, g/cm3
 
:<math> \mu_g </math> = gas viscosity, cp
 
:<math> \mu_g </math> = gas viscosity, cp
:<math> M_g </math> = gas molecular weight
+
:<math> M_g </math> = gas molecular weight, dimensionless
 
:<math> p </math> = pressure, psia
 
:<math> p </math> = pressure, psia
 
:<math> SG_g </math> = gas specific gravity, dimensionless
 
:<math> SG_g </math> = gas specific gravity, dimensionless

Revision as of 14:26, 2 May 2017

Brief

Lee correlation for viscosity of natural gases.

Math & Physics

 \mu_g = K\ e^{(X\ \rho_g^Y)} [1]

where

  K = \frac{(0.00094+2\times10^{-6}\ M_g)\ T^{1.5}}{(209+19M_g+T)}
 X = 3.5+\frac{986}{T}+0.001M_g
 Y = 2.4-0.203\ X
 M_g = 28.967\ SG_g
  \rho_g =  \frac{1}{62.428} \times \frac{28.967\ SG_g\ p}{z\ 10.732\ T}

Discussion

Why the Lee correlation?

Application range

  560 \le T < 800R\   or\  100 \le T < 340F
 100 < P \le 8000 psia

Nomenclature

 \rho_g = gas density, g/cm3
 \mu_g = gas viscosity, cp
 M_g = gas molecular weight, dimensionless
 p = pressure, psia
 SG_g = gas specific gravity, dimensionless
 T = temperature, °R
 z = gas compressibility factor, dimensionless

References

  1. Lee, A. B.; Gonzalez, M. H.; Eakin, B. E. (1966). "The Viscosity of Natural Gases". J Pet Technol (SPE-1340-PA).